001     57153
005     20200423204450.0
024 7 _ |a 10.1029/2006WR005333
|2 DOI
024 7 _ |a WOS:000246147700002
|2 WOS
024 7 _ |a 2128/19879
|2 Handle
037 _ _ |a PreJuSER-57153
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Limnology
084 _ _ |2 WoS
|a Water Resources
100 1 _ |0 P:(DE-HGF)0
|a Li, W.
|b 0
245 _ _ |a Two-dimensional characterization of hydraulic heterogeneity by multiple pumping tests
260 _ _ |a Washington, DC
|b AGU
|c 2007
300 _ _ |a WO04433
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 5958
|a Water Resources Research
|v 43
|x 0043-1397
|y 4
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a [1] The conventional analysis of pumping tests by type-curve methods is based on the assumption of a homogeneous aquifer. Applying these techniques to pumping test data from real heterogeneous aquifers leads to estimates of the hydraulic parameters that depend on the choice of the pumping and observation well positions. In this paper, we test whether these values may be viewed as pseudo-local values of transmissivity and storativity, which can be interpolated by kriging. We compare such estimates to those obtained by geostatistical inverse modeling, where heterogeneity is assumed in all stages of estimation. We use drawdown data from multiple pumping tests conducted at the test site in Krauthausen, Germany. The geometric mean values of transmissivity and storativity determined by type-curve analysis are very close to those obtained by geostatistical inversion, but the conventional approach failed to resolve the spatial variability of transmissivity. In contrast, the estimate from geostatistical inversion reveals more structure. This indicates that the estimates of the type-curve approaches can not be treated as pseudo-local values. Concerning storativity, both analysis methods show strong fluctuations. Because the variability of all terms making up the storativity is small, we believe that the estimated variability of storativity is biased. We examine the influence of measurement error on estimating structural parameters of covariance functions in the inversion. We obtain larger correlation lengths and smaller prior variances if we trust the measured data less.
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB359
|a Englert, A.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Cirpka, O.A.
|b 2
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, J.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)129549
|a Vereecken, H.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)2029553-4
|a 10.1029/2006WR005333
|g Vol. 43, p. WO04433
|p WO04433
|q 43|t Water resources research
|v 43
|x 0043-1397
|y 2007
856 7 _ |u http://dx.doi.org/10.1029/2006WR005333.
856 4 _ |u https://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:57153
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK407
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 0
914 1 _ |y 2007
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
920 1 _ |0 I:(DE-Juel1)VDB793
|d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|g JARA
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|g JARA
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|x 3
970 _ _ |a VDB:(DE-Juel1)89907
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21