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[1] The conventional analysis of pumping tests by type-curve methods is based on the
assumption of a homogeneous aquifer. Applying these techniques to pumping test data
from real heterogeneous aquifers leads to estimates of the hydraulic parameters that
depend on the choice of the pumping and observation well positions. In this paper, we test
whether these values may be viewed as pseudo-local values of transmissivity and
storativity, which can be interpolated by kriging. We compare such estimates to those
obtained by geostatistical inverse modeling, where heterogeneity is assumed in all stages
of estimation. We use drawdown data from multiple pumping tests conducted at the
test site in Krauthausen, Germany. The geometric mean values of transmissivity and
storativity determined by type-curve analysis are very close to those obtained by
geostatistical inversion, but the conventional approach failed to resolve the spatial
variability of transmissivity. In contrast, the estimate from geostatistical inversion reveals
more structure. This indicates that the estimates of the type-curve approaches can not
be treated as pseudo-local values. Concerning storativity, both analysis methods show
strong fluctuations. Because the variability of all terms making up the storativity is small,
we believe that the estimated variability of storativity is biased. We examine the influence
of measurement error on estimating structural parameters of covariance functions in the
inversion. We obtain larger correlation lengths and smaller prior variances if we trust the
measured data less.
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1. Introduction

[2] Pumping tests are common techniques for hydrogeo-
logical site investigation. During pumping tests, water is
injected or extracted from a production well and the changes
of water level are monitored in adjacent observation wells
as well as in the production well itself. Conventional
pumping tests are restricted to a single pumping well.
Analysis of these tests provides hydraulic properties over
a large influence zone, essentially an ellipse, between the
production and observation wells [Butler and Liu, 1993;
Gottlieb and Dietrich, 1995]. The obtained transmissivity is
a weighted average and does not provide detailed spatial
information [Yeh and Liu, 2000].
[3] To overcome the limitations of conventional pumping

tests, the method of hydraulic tomography has been pro-
posed [Neuman, 1987; Butler and Liu, 1993; Gottlieb and
Dietrich, 1995]. In hydraulic tomography, we inject or
extract water in multiple wells and monitor the changes of
heads or drawdowns at other multiple monitoring wells
[Butler and Liu, 1993; Gottlieb and Dietrich, 1995; Yeh and
Liu, 2000], obtaining multiple sets of head data. In dry or at

least unsaturated formations, one may inject or withdraw
gas instead of water [Vesselinov et al., 2001a]. These data
sets need to be jointly analyzed by methods similar to those
used in electrical resistivity tomography [Henderson and
Webster, 1978; Lytle and Dines, 1978]. Numerical inves-
tigations [Bohling, 1993; Gottlieb and Dietrich, 1995;
Vesselinov et al., 2001a, 2001b; Zhu and Yeh, 2006] and sand-
box experiments [Yeh and Liu, 2000] have demonstrated
that hydraulic tomography may produce a significantly im-
proved description of spatially variable hydraulic parameters.
[4] In this paper, we analyze pumping test data obtained

at the test site in Krauthausen of the Jülich Research Center,
Germany [Vanderborght and Vereecken, 2001; Vereecken et
al., 1999, 2000]. The research center has conducted a
sequence of aquifer tests; that is, water was pumped at
different wells and head changes were monitored at adjacent
wells. Although the way of conducting these tests differs
from the suggested three-dimensional setups for hydraulic
tomography in the references given above, it still follows
the same philosophy, namely giving stress to the aquifer at
different locations and observing the response at other
locations. It can be viewed as the special case of two-
dimensional hydraulic tomography.
[5] Type-curve methods are the basis of conventional

analysis of hydraulic aquifer tests [e.g., Meier et al.,
1998]. The conventional approaches are straightforward
and easy to implement, but they are based on the assump-
tion of a homogeneous isotropic formation and an infinite
domain, which may lead to biased estimates of hydraulic

1Swiss Federal Institute of Aquatic Science and Technology (EAWAG),
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Germany.

Copyright 2007 by the American Geophysical Union.
0043-1397/07/2006WR005333

W04433

WATER RESOURCES RESEARCH, VOL. 43, W04433, doi:10.1029/2006WR005333, 2007

1 of 13



parameters. The results of the conventional approaches
are apparent uniform values related to particular stress/
observation points. In contrast to the conventional methods,
the geostatistical inverse approach is based on the assump-
tion that the parameter fields are spatially correlated random
functions, which may be more consistent with the hetero-
geneous nature of aquifers [e.g., Hoeksema and Kitanidis,
1984; Rubin and Dagan, 1987]. The disadvantages of these
inverse approaches are that they are more difficult to
implement and require significantly higher computational
effort than the type-curve methods.
[6] Several studies have shown that the conventional

analysis of pumping tests can provide valuable information
of real heterogeneous media in spite of the assumption of
homogeneity. Meier et al. [1998] and Sánchez-Vila et al.
[1999] assessed the applicability of Jacob’s approach in
heterogeneous aquifers. They simulated a conventional pump-
ing test in a virtual two-dimensional aquifer where heteroge-
neous transmissivity and homogeneous storativity fields
were used. Jacob’s approach was applied to the late-time
response of drawdown curves. The estimated transmissivity
closely agreed with the real effective transmissivity. The
estimated storativity values varied strongly from one pump-
ing test to the other, although the real storativity was uniform.
Based on Theis’ method, Leven and Dietrich [2006] estimat-
ed the hydraulic parameters for different pumping test con-
figurations in a virtual aquifer. In their study, only the
pumping wells were monitored. The estimated transmissivity
from multiple pumping tests showed a close agreement with
the actual distribution. The estimated transmissivity from the
conventional pumping tests showed low variation and
approached the effective transmissivity of the virtual aquifer.
LikeMeier et al. [1998] and Sánchez-Vila et al. [1999], Leven
and Dietrich [2006] observed similar behavior in estimating
storativity, namely a strong variation in the estimate, despite
the fact that the actual field of storativity was uniform. Schad
and Teutsch [1994] applied the conventional analysis of
pumping tests in a real alluvial aquifer and successfully
estimated the effective length scale of the heterogeneous
structures. Neuman et al. [2004] developed a type-curve
approach to estimate the variance and integral scale of log
transmissivity in real media. This type-curve method can be
used to estimate the variance and the integral scale if a
sufficient number of pumping wells are available.
[7] In the literature, a number of studies on radial flow

toward a well in heterogeneous aquifers have been reported
[Sánchez-Vila et al., 1999; Copty and Findikakis, 2004].
Dagan [1982] and Guadagnini et al. [2003] derived analyt-
ical relationships between the effective transmissivity and
drawdown. These analytical solutions do not assume homo-
geneity of aquifers and have the potential of analyzing pump-
ing tests to obtain the hydraulic parameters of a formation.
[8] The purpose of this paper is to test whether transmis-

sivity and storativity estimates, obtained by conventional
type-curve analysis, can be viewed as local measurements
of the hydraulic parameters themselves. If the latter assump-
tion was valid, a continuous image of the field could be
obtained by geostatistical interpolation, i.e., kriging. We
will compare the kriged results of conventional pumping
test analysis with the best estimate from the geostatistical
inverse approach, which is conceptually more consistent.
We perform the estimates based on the two-dimensional

hydraulic tomography data from the test site in Krauthau-
sen. Unlike Leven and Dietrich [2006], who considered
only head measurements in multiple pumping wells, we will
include the drawdown information also from adjacent wells.
[9] As geostatistical inverse approach, we apply the

quasi-linear method of Kitanidis [1995] to invert temporal
moments of drawdown [Li et al., 2005]. In this approach,
we estimate a spatial variable, but smooth parameter field,
maximizing the posterior probability density of the param-
eters, linearized about the estimate itself. We develop a
strategy to analyze data from multiple two-dimensional
tomographic pumping tests. Unlike Zhu and Yeh [2006],
we apply the method to field data, where the true parameters
are not known and also the geostatistical parameters are
uncertain.
[10] In case that the functional relationship between

measurements and parameters is linear, the most likely
value of our inverse approach is identical to the mean of
conditional realizations. When the nonlinearity of the func-
tional relationship is pronounced, the most likely value
obtained by our method differs from the conditional mean.
To overcome this shortcoming and obtain the unbiased best
estimate, one may generate multiple realizations meeting the
measurements via Monte Carlo simulations [Sahuquillo et
al., 1992; Gutjahr et al., 1994] which may be computation-
ally demanding. An alternative method of computing the
conditional mean with high-order accuracy is based on con-
ditional nonlocal ensemble moment equations [Guadagnini
and Neuman, 1999a, 1999b; Hernandez et al., 2006]. This
method relies neither on multiple realizations nor on linea-
rizations. It comes, however, with significantly higher
computational costs than the quasi-linear approach used in
our study. In order to solve the underlying integrodifferen-
tial equations, the conditional covariance matrix of the
parameters must be computed explicitly and stored in each
iteration, which may become rather demanding for large-
scale problems discretized by hundreds of thousands of
nodes.
[11] Both kriging and the quasi-linear geostatistical

approach of inversion require the knowledge of structural
parameters, such as the variance and correlation length. We
estimate these parameters from the data using the restricted
maximum likelihood approach [Kitanidis and Vomvoris,
1983], and discuss the influence of the measurement error
on the identifiability of the structural parameters. The
advantages of this approach are threefold. First, it avoids
biased results of conventional experimental variogram anal-
ysis. Second, it can infer the structural parameters also from
related secondary information, such as hydraulic heads.
Third, the hydraulic parameter fields and the structural
parameters are estimated jointly.

2. General Approaches

[12] Conventional analysis of pumping tests consists of
fitting analytical solutions of the flow equation to the
measured time curves of drawdown [e.g., Theis, 1935;
Cooper and Jacob, 1946]. The analytical solutions are for
infinite, homogeneous, isotropic, two-dimensional forma-
tions. The estimated transmissivity and storativity values
represent apparent parameters, since the real formation may
not comply with the underlying assumptions of the analy-
tical solutions. By repeating the previous procedure for all
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series of pumping tests at different locations, we obtain a
set of pseudo-local values of transmissivity and storativity.
Then, we interpolate these local values, producing a
continuous image of the hydraulic parameters. Strictly
speaking, this procedure is only allowed in case of small-
scale pumping tests, because the support volume of the
measurements is neglected.
[13] In geostatistical inverse modeling, we assume that

the logarithm of hydraulic parameters are random space var-
iables exhibiting second-order stationarity [e.g., Kitanidis
and Vomvoris, 1983]. On the basis of Bayesian analysis, we
obtain the most likely set of the hydraulic parameters by
maximizing the linearized posterior probability density
function, conditioned on the temporal moments of all
drawdown curves in all pumping tests. The approach also
gives a lower bound of the uncertainty of the estimated
parameters.
[14] Both methods can be extended by a further Bayesian

updating step to estimate the structural parameters of the
prior covariance functions, i.e., the prior variances, the
correlation length, and the prior correlation between log
transmissivity and log storativity.
[15] Figure 1 shows a flowchart of the general procedures

applied in the conventional analysis and in geostatistical
inversion of the pumping test data. The left branch shows
the procedure in the conventional analysis of pumping tests;
the right branch illustrates the process of geostatistical
inversion using temporal moments of drawdown.

3. Governing Equations

3.1. Governing Equation of Drawdown

[16] We consider that the assumption of two-dimensional
regional groundwater flow in a confined aquifer is valid.
Prior to the pumping test, the system is assumed to be in

steady state. Then the drawdown s [m] observed during the
pumping test meets the following equation:

S
@s

@t
�r � Trsð Þ ¼ Q tð Þd x� xwð Þ; ð1Þ

with the initial and boundary conditions:

s ¼ 0 at t ¼ t0; ð2Þ

s ¼ 0 on GDiri 8t; ð3Þ

n � rs ¼ 0 on GNeu 8t; ð4Þ

where S [– ] and T [m2/s] are the depth-integrated
coefficients of storativity and transmissivity, respectively,
Q(t) [m3/s] denotes the pumping rate, d(x � xw) [1/m

2] is
the Dirac delta function, xw [m] is the location of the well,
GDiri and GNeu denote Dirichlet and Neumann boundaries,
and n [–] is the unit vector normal to the boundaries.

3.2. Temporal Moments of Drawdown

[17] The kth temporal moment mk(s(x)) [msk+1] of
drawdown and the kth moment mk(Q) [m

3sk] of the pump-
ing rate Q are defined by:

mk s xð Þð Þ ¼
Z 1

0

tks x; tð Þdt; ð5Þ

mk Qð Þ ¼
Z 1

0

tkQ tð Þdt: ð6Þ

[18] As derived by Li et al. [2005], the temporal moments
of drawdown meet the following elliptic equation provided
that the pumping rate Q(t) drops off to zero at late times:

�r � Trmkð Þ ¼ mk Qð Þd x� xwð Þ þ kSmk�1:; ð7Þ

subject to:

mk ¼ 0 on GDiri 8t; ð8Þ

n � rmk ¼ 0 on GNeu 8t; ð9Þ

in which we have dropped the argument s(x, t) in the nota-
tion of the temporal moment mk for simplicity. Equation (7)
directly relates the temporal moments to the hydraulic
parameters. Thus, we can use a series of steady state
equations to represent transient groundwater flow.

4. Geostatistical Framework

4.1. Prior Distribution of the Parameters

[19] We assume that the logarithms of transmissivity and
storativity are second-order stationary multi-Gaussian ran-
dom space variables. In a discretized domain with ne
elements, we have to estimate 2ne parameters. We aggregate
the log transmissivity and log storativity of all elements into
the 2ne 
 1 vector Y, which can be expressed by the sum of

Figure 1. General procedures of conventional analysis and
geostatistical inversion of pumping test data.
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a deterministic trend and random fluctuations Y0 about the
trend:

Y ¼ Xbþ Y0; ð10Þ

in which X is the 2ne 
 nb matrix of discretized base
functions, b is the nb 
 1 vector of trend coefficients, and
nb is the number of trend terms. In the simplest model, we
assume a uniform mean for both lnT and lnS, so that nb = 2,
and X has entries of unity in the first column for all
elements of Y, representing log transmissivity, and in the
second column for the elements representing log storativity;
the other entries are zeros.
[20] The 2ne 
 2ne prior covariance matrix RY0Y0jq =

E[Y0 
 Y0] consists of four blocks representing the
discretized auto-covariance functions of log transmissivity
and log storativity as well as the discretized cross-
covariance function:

RY0Y0 jq ¼
Rln T lnT jq Rln T ln Sjq

RT
lnT ln Sjq Rln S ln Sjq

2
4

3
5; ð11Þ

in which RlnT lnTjq is the auto-covariance matrix of lnT for
given structural parameters q, Rln SlnSjq is the auto-
covariance matrix of lnS, and RlnTlnSjq is the cross-
covariance matrix of lnT and lnS.
[21] In a continuous description, the various covariance

matrices are continuous covariance functions, depending on
the distance vector h between two points. At first, we assume
that the correlation structures of lnT and lnS are idenltical,
and that the quantities are correlated. This leads to:

Rln T lnT jq xþ h; xð Þ ¼ _s2
ln Tr hð Þ; ð12Þ

Rln S ln Sjq xþ h; xð Þ ¼ _s2
ln Sr hð Þ; ð13Þ

Rln T ln Sjq xþ h; xð Þ ¼ _Cln T ln Sr hð Þ; ð14Þ

in which RlnT lnT jq(x + h, x), RlnSlnSjq(x + h, x), and
RlnT lnSjq(x + h, x) are the auto-covariance functions of lnT
and lnS and the cross-covariance function of these quantities
for given structural parameters q; _slnT2 , and _slnS

2 are the prior
variances of lnT and lnS and _ClnT lnS is the covariance
between lnT and lnS at zero separation; r(h) is the
correlation function. Grain-size analysis and flowmeter data
of the test site under consideration [Vereecken et al., 2000]
suggest that the correlation function is an exponential
model. We assume that r(h) is isotropic:

r hð Þ ¼ exp � jhj
l

� �
; ð15Þ

in which jhj is the length of the distance vector h and l is
the correlation length. We aggregate _slnT

2 , _slnS
2 , _ClnT lnS, and

l into the nq 
 1 vector q of structural parameters, with nq
being the number of structural parameters (here four).
[22] In later steps of the analysis, we will assume that lnS

is spatially uniform. Then, the prior variance of lnS and the
cross-correlation coefficient become zeros. The prior
covariance matrix contains nonzero entries only in the
auto-covariance matrix RlnT lnT while the other blocks
become zero matrices. In these cases, the number of
structural parameters to be estimated becomes two: the prior

variance of lnT and the corresponding correlation length of
the covariance function RlnT lnT(x + h, x).
[23] We assume that the trend coefficients b are uncertain

prior to conditioning. b* is the nb 
 1 vector of the prior
mean of b, and the prior uncertainty of b about b* is
quantified by the nb 
 nb prior covariance matrix Rbb.
[24] We assume that the statistical distributions of Y0 and

b are (multi)Gaussian:

p Y0jqð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þ2ne det RY0Y0 jq

	 
q exp � 1

2
Y0TR�1

Y0Y0 jqY
0

� �
; ð16Þ

p bð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þnb det Rbb

	 
q exp � 1

2
b� b*

� 
T

R�1
bb b� b*
� 
� �

:

ð17Þ

4.2. Posterior Distribution of Parameters

[25] We now consider the nZ 
 1 measured values Zm of
a dependent variable Z(Y0, b), where nZ is the total number
of measured values. We assume a Gaussian likelihood
function p(ZmjY0, b) of Zm:

p ZmjY0;bð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð ÞnZ det VZZð Þ

p
� exp � 1

2
Zm � Z Y0;bð Þð ÞTV�1

ZZ Zm � Z Y0;bð Þð Þ
� �

;

ð18Þ

where VZZ is the nZ 
 nZ matrix of the corresponding
epistemic error and Z(Y0, b) is the model prediction.
[26] Applying Bayes’ theorem, we can obtain the condi-

tional distribution p(Y0, bjZm, q) of the parameters Y0 and b
given the measurements Zm and structural parameters q:

p Y0;bjZm; qð Þ ¼ p ZmjY0;bð Þp Y0jqð Þp bð Þ
p Zmjqð Þ ; ð19Þ

in which p(Zmjq) is a scalar constant for given q.
[27] Substituting equations (16), (17), and (18) into

equation (19) yields:

p Y0;bjZm; qð Þ / exp � 1

2
Y0TR�1

Y0Y0 jqY
0

�

� 1

2
b� b*

� 
T

R�1
bb b� b*
� 


� 1

2
Zm � Z Y0;bð Þð ÞTV�1

ZZ Zm � Z Y0;bð Þð Þ
�
:

ð20Þ

The most likely estimate maximizes the conditional
probability density p(Y0, bjZm, q); that is, it minimizes the
doubled value of its negative logarithm of the right-hand
side term in equation (20):

L Y0;bjZm; qð Þ ¼ Y0TR�1
Y0Y0 jqY

0 þ b� b*
� 
T

R�1
bb b� b*
� 


þ Zm � Z Y0;bð Þð ÞTV�1
ZZ Zm � Z Y0;bð Þð Þ þ const::

ð21Þ
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4.3. Kriging of Pseudo-Local Values

[28] In interpolation by kriging, we consider local meas-
urements of lnT and lnS. The functional relation Z(Y0, b)
between the measurements and parameters Y can be
expressed as:

Z Yð Þ ¼ H Xbþ Y0ð Þ; ð22Þ

where H is a 2n‘ 
 2ne extraction matrix with a single unit
element per line. n‘ is the number of calculated lnT and lnS
pairs. Then, our objective function becomes:

L Y0;bjZm; qð Þ ¼ Y0TR�1
Y0Y0 jqY

0 þ b� b*
� 
T

R�1
bb b� b*
� 


þ Zm �H Xbþ Y0ð Þð ÞTV�1
ZZ Zm �H Xbþ Y0ð Þð Þ þ const::

ð23Þ

[29] The optimal set of parameters minimizes the objec-
tive function given in equation (23). It can be shown that the
most likely estimate Ŷ can be expressed as:

Ŷ ¼ Xb̂þ RY0Y0 jqH
Tx; ð24Þ

in which b̂ is the estimate of the trend coefficients and x̂ is a
2n‘ 
 1 vector of weights. These coefficients are computed
by solving [Kitanidis, 1995]:

VZZ þHRY0Y0 jqH
T HX

XTHT �R�1
bb

2
4

3
5 x

b̂

2
4

3
5 ¼

Zm

�R�1
bbb*

2
4

3
5: ð25Þ

[30] The conditional covariance matrix RYYjZm of the
parameter Y is defined as:

RYYjZm ¼ RY0Y0 jq �
HRY0Y0 jq

XT

2
4

3
5
T

�
VZZ þHRY0Y0 jqH

T HX

XTHT �R�1
bb

2
4

3
5
�1

HRY0Y0 jq

XT

2
4

3
5:

ð26Þ

It may be worth noting that the simple structure ofH does not
require computing matrix-matrix products explicitly.
HRY0Y0jqH

T is the auto-covariance matrix of Y evaluated
only for the elements of Y for which measurements exist.
Also, because the relationship between measurements and
estimated parameters is linear, the most likely value Ŷ is
identical to the expected value of the conditional distribution.

4.4. Hydraulic Tomography

[31] In our geostatistical inverse approach, we use the
temporal moments of various transient drawdown curves as
measurements. In this paper, the zeroth and the first tem-
poral moments are used. We introduce a 2nm 
 1 vector Zm

containing the measurements of the calculated moments, in
which nm is the number of moment pairs.
[32] Because the functional relationship Z(Y) between

the parameters Y and the measurements Zm is nonlinear, an
iterative scheme has to be applied. Linearization about the
last estimate Ŷk yields:

Z Yð Þ � Z Ŷk

	 

þHk Y� Ŷk

	 

; ð27Þ

in which Hk is the 2nm 
 2ne sensitivity matrix about Ŷk .
Now we introduce a 2nm 
 1 vector Z0 of corrected
measurements:

Z0 ¼ Zm � Z Ŷk

	 

þHkŶk : ð28Þ

Then, the objective function becomes:

L Y0;bjZm; qð Þ ¼ Y0TR�1
Y0Y0 jqY

0 þ b� b�ð ÞTR�1
bb b� b�ð Þ

þ Z0 �Hk Ykð Þ
	 
T

V�1
ZZ Z0 �Hk Ykð Þ
	 


þ const::
ð29Þ

The expression is formally identical to that in equation (23)
and the same general approach can be used to obtain the
most likely value of Y. The structure of H, however, is more
complicated than in the case of interpolation. Because Hk

and Z0 depend on the current estimate, an iterative approach
is needed where Hk and Z0 are updated after each iteration
[Kitanidis, 1995]. We stabilize the approach by a modified
Levenberg-Marquardt method [Nowak and Cirpka, 2004],
compute the sensitivities by the continuous adjoint-state
method [Sun and Yeh, 1990], and accelerate the matrix-
matrix multiplications involved by periodic embedding and
spectral methods [Nowak et al., 2003].
[33] Because we linearize the functional relationship

between Zm and Y, the most likely value obtained by our
method is the expected value only of the linearized
conditional distribution. To obtain the unbiased best
estimate, computationally expensive methods based on
conditional realizations [e.g., Sahuquillo et al., 1992;
Gutjahr et al., 1994] or integrodifferential moment
equations [Neuman and Orr, 1993a, 1993b; Guadagnini
and Neuman, 1999a, 1999b; Hernandez et al., 2006] would
be needed.

4.5. Estimation of Structural Parameters

[34] In the previous derivation, we have assumed that the
structural parameters q are known. In reality, these param-
eters have to be estimated from the data as well. For this
purpose, we apply the restricted maximum likelihood ap-
proach [Kitanidis and Vomvoris, 1983].
[35] The optimal set of q maximizes the conditional

probability density p(qjZm) of the structural parameters q
given the measurements Zm. In the framework of Bayes’
theorem, p(qjZm) is given by:

p qjZmð Þ ¼ p ZmjY0;bð Þp Y0jqð Þp bð Þp qð Þ
p Y0;bjZm; qð Þp Zmð Þ ; ð30Þ

in which p(Zm) is a scalar, which does not depend on q.
[36] We assume that the prior probability density function

p(q) of q is multi-Gaussian:

p qð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þnq det Rqqð Þ

p exp � 1

2
q � q*

� 
T

R�1
qq q � q*
� 
� �

;

ð31Þ

in which q* is the nq 
 1 vector of the prior mean of q and
Rqq is the nq 
 nq prior covariance matrix.
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[37] Assuming that the linearization about the most likely
value of Y is permissible, it can be shown that p(qjZm) is
identical to [Kitanidis, 1995]:

p qjZmð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Xð Þ
det Rqqð Þ

s
� exp � 1

2
Z0 �HXb*

� 
T
�

�X Z0 �HXb*
� 


� 1

2
q � q*

� 
T

R�1
qq q � q*
� 
�

;

ð32Þ

where X is defined as:

X ¼ SþHXRbbX
THT

	 
�1

¼ S�1 �S�1HX R�1
bb þ XTHTS�1HX

� 
�1

XTHTS�1; ð33Þ

with

S ¼ VZZ þHRY0Y0 jqH
T : ð34Þ

The optimal set of q maximizes p(qjZm) or minimizes the
doubled value of its negative logarithm L(qjZm):

L qjZmð Þ ¼ � ln det Xð Þð Þ
þ Z0 �HXb�	 
TX Z0 �HXb�	 

þ q � q�ð ÞTR�1

qq q � q�ð Þ þ const:; ð35Þ

where all terms that do not depend on q are included in the
constant. In case of diffuse prior knowledge about q, the third
term in equation (35) disappears. In this paper, the optimal set
q minimizing L(qjZm) is determined by the Nelder-Mead
simplex method [e.g., Press et al., 1992, p. 408]. Finally, the
estimation covariance of q is approximated by:

RqqjZm � E
@2L qjZmð Þ
@q 
 @q

� �� ��1

; ð36Þ

which is determined at the most likely value.
[38] Because of the underlying nonlinearity of the func-

tional relation between the measurements and hydraulic
parameters, the estimate of structural parameters depends
on the estimate of the hydraulic parameters. Thus, an
iterative procedure is needed in which the hydraulic param-
eters and the structural parameters are estimated in an
alternating manner [Kitanidis, 1995].

5. Experiments

5.1. Description of the Test Site

[39] The Krauthausen test site is located in the southern
part of the Lower Rhine Embayment, Germany [Vanderborght
and Vereecken, 2001; Vereecken et al., 1999, 2000]. It has an
extension of 180 m 
 50 m. All studies at the test site have
focused on the uppermost aquifer with a thickness of
approximately 10 m. This aquifer is part of a floodplain,
consisting mainly of gravel and sand sediments. The site is
equipped with 73 monitoring wells (approximately 5 cm in
diameter) and a single well with approximately 17.5 cm in
diameter used as pumping well in a large-scale pumping
test.

[40] Because the drawdowns during the small-scale
pumping tests were considerably smaller than the thickness
of the aquifer, it is permissible to use the equations for
confined conditions in our analysis. We analyze the values
of storativity for each pumping test using Theis’ [1935]
method, resulting in values ranging from 2.5 
 10�4 to
0.017, which indicates confined conditions.

5.2. Pumping Tests and Data Preparation

5.2.1. Description of Pumping Tests
[41] From March to August 2000, a series of small-scale

pumping tests with a discharge rate of 2 m3/h were con-
ducted at 29 different pumping wells at the test site in
Krauthausen [Lamertz, 2001]. For each pumping test,
approximately 10 wells adjacent to the production wells
were used as observation wells. Well locations are marked
by circles in Figures 2 and 4. The distances of pumping and
observation wells range from 1.63 m to 130.91 m. Both the
pumping and observation wells were equipped with
automatic loggers of hydraulic head with a resolution of
1 mm to measure and store the head changes at time
intervals of 10 s. The pumping continued for 2 hours.
[42] In addition, the research center Jülich has conducted

a large-scale pumping test with a discharge rate of 80 m3/h.
The production well was located at the center of the test site.
The large-scale pumping test lasted for approximately
7 hours.
5.2.2. Analysis by Theis’ Approach
[43] We use Theis’ [1935] approach to estimate lnT and

lnS from each transient drawdown curve of the small-scale
pumping tests. We obtain the optimal values of lnT and lnS
by minimizing the following objective function M:

M ¼ s� seð ÞT s� seð Þ
s2
s

; ð37Þ

where s is the measured drawdown, ss is the epistemic error
of drawdown and se is the model output defined by:

se r; tð Þ ¼ Q tð Þ
4pT

Ei
r2S

4Tt

� �
; ð38Þ

in which r is the distance between the production and
monitoring wells and Ei(�) is the exponential integral
function.
[44] The epistemic error ss

2 of drawdown is assumed
uncorrelated and identical for all measurements. ss

2 includes
random and systematic contributions. In most circum-
stances, ss

2 is not known and need to be estimated. If ss
2

reflects the real uncertainty of the drawdown measurements,
the value of M should statistically follow a c2 distribution
with m degree of freedom, where m is the number of
observations minus the number of estimated parameters.
The proper value of ss

2 is determined by enforcing M to
meet its expected value.
[45] The estimation covariance matrix Qc of the estimated

lnT and lnS is approximated by the inverse Hessian matrix at
the optimal set of the parameters U:

Qc ¼
s2
ln T ClnT ln S

ClnT ln S s2
ln S

� �
� @2M

@U
 @U

� ��1

; ð39Þ
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where U is the vector containing the two variables lnT and
lnS, slnT

2 and slnS
2 are the estimation variances of the

parameter of lnT and lnS, respectively, and ClnT lnS denotes
the cross-covariance between lnT and lnS.
[46] We obtain a pair of lnT and lnS values for each

drawdown curve. At a location which has been used either
as an observation point or as a pumping well in multiple
pumping tests, we compute a weighted average from all
parameters obtained at this location, resulting in a single
pair of lnT and lnS values:

wi ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

slnT ;i 
 sln S;i
p ; for i ¼ 1 � � � ‘; ð40Þ

~Uln T ¼ 1P‘
i¼1 wi

X‘

i¼1

wiUln T ;i; ð41Þ

~Uln S ¼ 1P‘
i¼1 wi

X‘

i¼1

wiUln S;i; ð42Þ

where wi is the weight and ‘ is the number of pairs of lnT
and lnS at this location, and ~U lnT and ~U lnS is the weighted

average of UlnT and UlnS of the estimated lnT and lnS,
respectively. We consider these weighted averages as
pseudo-local measurements in kriging.
[47] The associated measurement error is composed of

the weighted average of the parameter uncertainty in fitting
Theis’ solution to the single drawdown curves and the
variability of the parameter estimates among the different
tests:

~s2
lnT ¼ ‘P‘

i¼1 wi

þ 1P‘
i¼1 wi � 1

X‘

i¼1

wi Uln T ;i � �UlnT

	 
2
;

~s2
ln S ¼ ‘P‘

i¼1 wi

þ 1P‘
i¼1 wi � 1

X‘

i¼1

wi Uln S;i � �Uln S

	 
2
;

~Cln T ln S ¼ ‘P‘
i¼1

1
Cln T ln S;i

þ 1P‘
i¼1 wi � 1

�
X‘

i¼1

wi Uln T ;i � �Uln T

	 

Uln S;i � �Uln S

	 

; ð43Þ

where ~slnT
2 and ~slnS

2 are the weighted estimation variances of
the estimated parameter lnT and lnS, respectively; �U lnT is
the arithmetic mean of the estimated lnT at this location;
�U lnS is the arithmetic mean of the estimated lnS; and ~ClnT lnS

is the weighted cross-covariance between lnT and lnS. In
most cases, the latter contribution dominates the computed
measurement error. ~slnT

2 , ~slnS
2 and ~ClnT lnS compose the term

VZZ in equation (23):

VZZ ¼

~s2
ln T ;1 0 0 ~ClnT ln S;1 0 0

0 . .
.

0 0 . .
.

0

0 0 ~s2
ln T ;m 0 0 ~Cln T ln S;m

~Cln T ln S;1 0 0 ~s2
ln S;1 0 0

0 . .
.

0 0 . .
.

0

0 0 ~Cln T ln S;m 0 0 ~s2
ln S;m

2
6666666664

3
7777777775
;

ð44Þ

in which m is the number of the measurement locations.
5.2.3. Computation of Temporal Moments
[48] As has been shown earlier [Li et al., 2005], the

temporal moments of drawdown for a unit-pulse extraction
can be derived from measurements of drawdown observed
during continuous pumping. Because the head measure-
ments fluctuated, we obtained more stable estimates of the
moments by fitting a parametric function to the observa-
tions. The maxentropic semi-infinite distribution for given
zeroth and first temporal moments is the exponential one
[Gibbs, 1902]. Like Bakker et al. [2006], we use the latter
expression to parameterize the drawdown for pulse-like
extraction. This results in the following expression for
continuous pumping:

se ¼ Qm0 1� exp �m0

m1

t

� �� �
; ð45Þ

where m0 and m1 denote the zeroth and first temporal
moments for pulse-like extraction, respectively. The optimal
pair of temporal moments is determined by minimizing the
weighted difference between the observed and simulated

Figure 2. Interpolated fields of lnT, lnS, and their
corresponding standard deviations of estimation using the
values obtained by conventional type-curve analysis as
pseudo-local values. Circles are the well locations of
pumping tests.
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drawdown curves. The corresponding objective function is
similar to equation (37). The estimation covariance matrix
of m0 and m1 is given by the inverse Hessian matrix of the
objective function at the optimal point.
[49] At late times, when the exponential part in equation (45)

approaches zero, the difference between s and se is dominated
by the difference between s and Qm0. Qm0 is equivalent to
the final drawdown. Statistically, Qm0 is determined by
averaging the measured values of drawdown at late times.
According to the statistical formulation, the uncertainty of
the estimated final drawdown is defined as the ratio between
the squared measurement error of drawdown and the number
of the measured drawdown data used. The uncertainty
decreases with increasing number of measurement points.
However, this uncertainty of the final drawdown does not
reflect the real measuring process, for which an accuracy
beyond the resolution of the device is impossible. To account
for such nonrandom effects, we add an additional measure-
ment error ssD to the estimated uncertainty of the final draw-
down. This additional measurement error of final drawdown
propagates to the estimation variances of the zeroth and first
temporal moments and the cross-variance between the
estimated m0 and m1:

~s2
m0

¼ s2
m0

þ ssD

Q

� �2

; ð46Þ

~s2
m1

¼ s2
m1

þ m1

m0

� �2

� ssD

Q

� �2

; ð47Þ

~Cm0m1
¼ Cm0m1

þ m1

m0

� ssD

Q

� �2

; ð48Þ

where ~sm0
2 and ~sm1

2 are the total uncertainties of the
determined m0 and m1 values, respectively, and ~Cm0m1 is
the cross-variance between m0 and m1. sm0

2 , sm1
2 , and Cm0m1

are computed from the inverse Hessian matrix of the
objective function at the optimal point. In most cases, the
contribution of ssD dominates the total uncertainties. ~sm0

2 ,
~sm1
2 , and ~Cm0m1 are the terms in VZZ of equation (29):

VZZ ¼

~s2
m0;1

0 0 ~Cm0m1 ;1 0 0

0 . .
.

0 0 . .
.

0

0 0 ~s2
m0;nm

0 0 ~Cm0m1 ;nm

~Cm0m1;1 0 0 ~s2
m1;1

0 0

0 . .
.

0 0 . .
.

0

0 0 ~Cm0m1 ;nm 0 0 ~s2
m1;nm

2
6666666666666666664

3
7777777777777777775

;

ð49Þ

in which nm is the number of moment pairs.
[50] The error ssD is not necessary for the previous

approach where Theis’ method is used to estimate lnT and

lnS, because Theis’ approach does not rely on measure-
ments of final drawdown.

6. Implementation and Results

6.1. Kriging of Pseudo-Local Values

[51] Using the pseudo-local values of lnT and lnS
obtained from type-curve analysis, we can estimate the
structural parameters of the covariance functions.
[52] In this paper, we assume diffuse prior knowledge of

the structural parameters. The prior knowledge of the trend
coefficients b is given in Table 1. To avoid negative values in
the estimates of _slnT

2 , _slnS
2 , and l, we estimate the logarithms

of these parameters. Correspondingly, the uncertainties of
these parameters are quantified by the factor of variation
(FV), which is the exponential of the standard deviation of
the log parameter. Concerning _ClnT lnS, we estimate its
related correlation coefficient rlnT lnS:

rlnT ln S ¼
_ClnT ln S

sln Tsln S

: ð50Þ

To guarantee that rlnT lnS remains within the range between
�1 and 1, we apply the error function as transformation
between an auxiliary variable m, ranging between �1 and
1, and rlnT lnS, and estimate m:

rlnT ln S ¼ erf mð Þ: ð51Þ

[53] For structural parameter estimation, we apply the
approach described in section 4.5. The estimated structural
parameters and their corresponding uncertainties are listed
in Table 1. With the estimated structural parameters, we
estimate lnT and lnS on a regular grid. The field dimension
and resolution are listed in Table 1. We subsequently apply
equations (25) and (24) to obtain the parameter fields of lnT
and lnS. The uncertainties of lnT and lnS are quantified by
equation (26). Figure 2 shows the fields of lnT and lnS and
their corresponding standard deviations of estimation.
[54] The estimated prior variance of lnT is very small,

namely 0.01, indicating an almost uniform distribution of
transmissivity. In comparison, the estimated prior variance
of lnS is higher, namely 0.24. As listed in Table 1, the total
variances of measurements of lnT and lnS are fairly small,
while the associated ‘‘measurement’’ errors are relatively
large. As explained in section 5.2.2, the pseudo-local values
are obtained by averaging all measurements in which a
particular well is involved either as a pumping or as a
monitoring well. Obviously, the variability between mea-
surements, involving the same points, is larger than the
variability between the averages obtained at different points.
Thus, using the results of type-curve analysis as point-like
values is not permitted.
[55] The relatively large variance in the estimated field of

lnS and small variance of lnT in our study reflects the
findings of other studies [Meier et al., 1998; Sánchez-Vila
et al., 1999; Leven and Dietrich, 2006], which were based
on numerical simulations only. In these studies, a small
variability of lnT and high variability of lnS were found by
type-curve analysis despite using uniform storativity values
in the simulations. In general, the variance of storativity in
natural systems is thought to be relatively small [Meier et al.,
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1998]. Under confined conditions, compressibilities of rock,
water, and the pore space determine the storativity. The
contributions of the rock and water compressibilities are
considered to be small at all local scales [e.g., Meier et al.,
1998]. Under phreatic conditions, the storativity becomes the
porosity, which varies only within a small range [e.g., Meier
et al., 1998; Vesselinov et al., 2001a, 2001b]. That is, we
believe that the estimate of the variability of lnS is biased. The
bias may be caused by the inconsistent assumption of
homogeneity in the conventional pumping test analysis. It is
worth analyzing whether the bias disappears when we apply
the geostatistical inverse approach, in which the hydraulic
parameter fields are assumed spatially variable in all stages of
the estimation procedure.

6.2. Quasi-Linear Geostatistical Inversion of Temporal
Moments

[56] In contrast to section 6.1, we cannot directly derive
the structural parameters q from the computed measure-

ments of m0 and m1, because the functional relation
between the temporal moments and hydraulic parameters
is nonlinear. The estimation of structural parameters
depends on the current estimates of lnT and lnS. We have
to start with the estimation of lnT and lnS. To do that, we
need initial values of related structural parameters. For the
initial value of the correlation length, we take the values
estimated in section 6.1. Because we expect more variations
in the estimate of lnT with the geostatistical inverse
approach, we take unity as the initial value of the prior
variance _slnT

2 , a much higher value than the one estimated
from the pseudo-local values in section 6.1. As the initial
value of the prior variance of lnS, we take the value
estimated in section 6.1.
[57] We use the same grid resolution as in section 6.1. To

reduce the influence of boundary conditions, we enlarge the
domain on each side by 50 m. Zero drawdown is assumed
on the boundaries of the enlarged domain. Following the

Table 1. Field and Grid Information, Prior and Posterior Information of Hydraulic Parameter Fields in

Section 6.1 and 6.2, and the Results of Comparison in Section 6.3

Variable Description Value

Field Domain and Grid Information
L1 Domain width, m 50
L2 Domain length, m 180
Dx1 Grid spacing in x1, m 0.5
Dx2 Grid spacing in x2, m 0.5

Prior Information About the Mean of the Fields
b*lnT Prior mean of trend coefficient of lnT �3.8
sblnT

2 Uncertainty of b*lnT �5.3
b*lnS Prior mean of trend coefficient of lnS �6.0
sblnS
2 Uncertainty of b*lnS �5.3

Results of Curve-Fitting in Section 6.1
slnT,m
2 Variance of calculated lnT at wells 0.0349

slnS,m
2 Variance of calculated lnS at wells 0.6590

�slnT Mean measurement error of lnT 0.3288

�slnS Mean measurement error of lnS 0.9498

Estimated Structural Parameters in Section 6.1
_slnT
2 Estimated prior variance of lnT in section 6.1 0.01

FV _s
2
lnT Factor of variation of _slnT

2 2.2
_slnS
2 Estimated prior variance of lnT in section 6.1 0.24

FV _s lnS
2 Factor of variation of _slnS

2 1.62
_ClnT lnS Estimated prior cross-correlation coefficient between lnT and lnS 0.35
R _C lnT lnS

Estimation variance of _ClnT lnS 0.49
l Correlation length of covariance function, m 5.21
FVl Factor of variation of l 2.46

crn
2 Sum of Squares of Orthonormal Residuals rn in Section 6.2.1

crn
2 lestimated sd = 1.15 mm 577.49

crn
2 lfixed sd = 1.15 mm 403.13

Results in Section 6.2.2
_slnT
2 Estimated prior variance of lnT 1.57

FV _slnT
2 Factor of variation of _slnT

2 0.14
L Value of objective function (equation (29)) 380.04
crn
2 Sum of squares of rn 380.02

Results of Comparison in Section 6.3
Tg Geometric mean of estimate lnT (section 6.1) �3.61

Geometric mean of estimate lnT (section 6.2) �3.65
Sg Geometric mean of estimate lnS (section 6.1) �5.81

Geometric mean of estimate lnS (section 6.2) �5.12
slnT,c
2 Variance of estimate lnT (section 6.1) 0.0004

Variance of estimate lnT (section 6.2) 0.26
NRMSE Normalized root mean square error (equation (52)) 0.5984
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approaches described in sections 4.4 and 4.5, we start the
quasi-linear geostatistical inversion of temporal moments
with the large-scale pumping test and use the resulting
estimates as the initial guess for analyzing the small-scale
pumping tests. We implement the small-scale pumping tests
in a sequential way, beginning with a single small-scale
pumping test. Once the optimal parameter set is obtained,
we add new pumping test data to the inversion and estimate
the hydraulic parameters using the data of all pumping tests
accounted for at the current stage. The estimate from the
previous sequential step serve as initial guess for the
following estimation. We keep adding new pumping tests
until all available tests are used. This successive addition of
new measurements stabilizes the inverse procedure. The
approach differs from the sequential successive linear esti-
mator (SSLE) developed by Yeh et al. [1996] in the way how
information in propagated from one sequential step to the
next. While Yeh et al. take the estimate and approximated
conditional covariance matrix as prior mean and covariance
in the next step, we consider the previous estimate only as
initial guess. As prior values, we always start from the
unconditional distribution, which we then condition on all
data accounted for so far. This approach has the advantage
that we do not have to perform expensive matrix-matrix
multiplications of conditional covariance matrices.
[58] After we obtain the most likely distribution of lnT

and lnS for all pumping tests based on the initial guess of q,

we start alternating the estimation of the structural and
hydraulic parameters. In the alternating procedure, we use
only the measurements of temporal moments of the small-
scale pumping tests.
6.2.1. Impact of Measurement Error on the Estimation
of Structural Parameters
[59] The measurement error ssD influences the spatial

variability of the estimated hydraulic parameter fields. In the
following, we take the estimation of the structural para-
meters as an example to illustrate this influence. Following
the sequential and alternating inversion procedure described
previously, we estimate _slnT

2 , _slnS
2 , and l. Figure 3a shows

the resulting correlation length l as function of different
values of ssD. With increasing measurement error, we obtain
an increasing value of l, which makes the estimates of
hydraulic parameters smooth. The estimation of the correla-
tion length is more vulnerable to the change of measurement
error than the ones of the prior variances. For the
measurement errors used, the estimated prior variances do
not show significant changes. Therefore we do not show the
estimating results of _slnT and _slnS. Meanwhile, we calculate
the values of the objective function according to equation (29),
which decreases with increasing ssD. The latter is to be
expected because increasing ssD implies that we trust the
measurements less, and therefore an identical misfit between
measured and simulated moments results in a smaller value of
the objective function.
[60] The influence of the measurement error on the esti-

mation of prior variances becomes clear if we fix the
correlation length l. We take the estimated correlation
length in section 6.1 as fixed value of l. Figure 3b displays
the resulting _slnT

2 and _slnS
2 as function of the different values

of ssD. The prior variances decrease when ssD increases,
which smoothes the estimated fields of hydraulic parameters.
[61] If the measurement error reflects the real uncertainty

of the model, the value of the objective function should
follow a c2 distribution with 2nm degrees of freedom, where
nm is the number of temporal moment pairs. In our current
studies, we have 169 pairs of measurements of temporal
moments. In general, the 95% confidence interval is used,
which implies an interval between 320.11 and 390.82 for
our case studies. Since large measurement error will smooth
the estimated fields, it is preferable to choose a small mea-
surement error within all acceptable ones. In the following,
we have chosen 1.15 mm as our measurement error ssD.
[62] In the illustrated examples in Figure 3, the estimated

values of the prior variance of lnS are larger than the
estimated values of the prior variance of lnT. As we have
discussed previously, the variance of lnS in natural confined
system is thought to be small [Meier et al., 1998]. That is,
we believe that the estimated variability of lnS is biased, like
in the conventional pumping test analysis. Although the
geostatistical inverse approach is consistent in the sense that
the estimated variability of the hydraulic parameters is
accounted for in all stages of the estimation procedure, the
results of the storativity distribution appear not very
reliable. We believe that this is an effect of aliasing. The
estimated distribution of lnT is smoother than the real field.
The unresolved small-scale variability has larger effect on the
simulated first temporal moments, representing the char-
acteristic time of drawdown, than on the zeroth temporal
moments, representing final drawdown. Given a too smooth

Figure 3. Influence of the measurement error on the
inversion results. The horizontal axes are the measurement
error used in the inverse procedure. (a) Estimation of structural
parameters with varying correlation length: (1) influence on
the estimated correlation length and (2) influence on the value
of objective function. (b) Estimation of structural parameters
with fixed correlation length: (1) influence on the estimated
prior variance of lnT and (2) influence on the estimated prior
variance of lnS.
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distribution of lnT, the inverse approach attributes the derived
variability in m1 to variations in lnS. In both methods to
analyze the pumping tests, we use a two-dimensional
description of the aquifer and ignore any vertical flow. That
is, the unresolved variability may mainly be caused by
neglecting the three-dimensional nature of the real formation.
Working with measurements obtained in fully screened
wells, however, we cannot resolve the vertical variation of
hydraulic parameters.
6.2.2. Estimation With Uniform Storativity
[63] Presuming that the variance of lnS is relatively small

in nature, we now restrict the analysis to the case of a uniform
value of storativity. Then, the prior variance of storativity and
the cross-correlation between lnT and lnS become zeros. To
make the estimate of lnT more comparable with that in
section 6.1, we fix the correlation length using the value
estimated from the pseudo-local values. Following the
procedure as described previously, we estimate the spatial
lnT distribution and, as remaining structural parameter, its
prior variance _slnT

2 given a uniform field of lnS. The mean
values of lnS and lnT are estimated as well.
[64] As listed in Table 1, the estimated prior variance _slnT

2

of lnT for a uniform value of lnS is 1.57, and S is 0.006.
These values are for a measurement error ssD of 1.15 mm.
Figure 4 shows the estimate of lnT-field and the correspon-
ding standard deviation of estimation. In Figure 4c, we plot
the kriged lnT field of section 6.1 in the same color scale as
for the lnT distribution estimated in this section. Applying the
geostatistical inverse approach, the estimated lnT field

reveals more structure than interpolating the results of the
pseudo-local values obtained by type-curve analysis. The
estimated prior variance _slnT

2 is much higher than the one from
the pseudo-local values. The improvement in revealing the
structure of the lnT field is caused by the consistent assumption
of heterogeneity in the geostatistical inverse approach.
[65] The validity of the estimated fields is tested by

analyzing the orthonormal residuals [Kitanidis, 1991]. If
the model is correct, the sum of squares of orthonormal
residuals of the measurements follows a c2 distribution. In
our application, this value is 380.02, which is within the
95% confidence interval (320.11–390.82).

6.3. Comparison of Estimates

[66] In this section, we compare the results from kriging
of pseudo-local values (section 6.1) to those from geo-
statistical inversion (section 6.2.2). The estimated average
properties, the variations of the estimated fields, and the
uncertainties of the estimations are investigated.
[67] We compute the mean values of the estimated fields

of lnT and lnS from kriging and inversion. Table 1 lists these
values. The mean values of lnT and lnS obtained by the
conventional approach are almost identical to the ones of
geostatistical inversion. That is, in our application, conven-
tional type-curve analysis of pumping tests leads to reliable
estimates of the average properties. This is somehow
consistent with the underlying assumption of uniformity
in the type-curve analysis.
[68] We calculate the variances of the estimated lnT field

for both kriged and inverse results. Table 1 lists the resulting
variances. The variance of the resolved inverse lnT field is
higher than the one obtained by kriging. Again, this is
consistent with the underlying conceptual assumptions. In
geostatistical inversion, we assume that lnT varies in space,
and we try to resolve the fraction of heterogeneity that can
unambiguously be identified from the data. In type-curve
analysis, we start with the assumption of uniformity, but
obtain results varying with the combination of pumping and
monitoring wells, which is similar to the results of cross-
hole pneumatic injection tests of Illman and Neuman
[2003].
[69] We may examine the estimated lnT values at the

points of head measurements. Figure 5 shows a comparison
of these values for the two types of analysis. The circles
stand for the values obtained by geostatistical inversion. The
error bars indicate the best estimate of lnT of the
geostatistical inversion plus and minus one corresponding
standard deviation of the estimate. The crosses denote the
pseudo-local values obtained by the conventional method.
With very few exceptions, the calculated pseudo-local
values are within the acceptable confidence interval.
[70] To quantify the difference between the two lnT fields

throughout the domain, we compute the normalized root
mean square error (NRMSE):

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ne

Xne
i¼1

pinvi � pkrii

	 
2
s2
ln T ;c

vuut ; ð52Þ

where pi is the estimated lnT value in element i, the index
inv stands for the estimate of inversion, the index kri for that
of interpolated pseudo-local values, and slnT,c

2 is the

Figure 4. (a) Best estimate of lnT from geostatistical
inversion; (b) corresponding standard deviations of estima-
tion; (c) kriged lnT field based on pseudo-local values.
Circles are the well locations of all available pumping tests.
The color scales for the two lnT fields are identical.
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estimation variance of lnT in the inverse method. The value
0.5984 of NRMSE indicates that the values from the
conventional approach can produce reasonable fields of
hydraulic parameters, although most of the spatial varia-
bility is missing.

7. Conclusions

[71] We have analyzed multiple pumping tests conducted
at the test site in Krauthausen, Germany, using conventional
type-curve analysis and geostatistical inverse modeling. The
results show that the conventional approach provides good
estimates of the mean hydraulic parameters, but fails to
reproduce the spatial variability of the formation.
[72] Concerning the estimate of lnT, the results from the

conventional approach show small variation and are close to
the geometric mean. Small variation in estimated lnT has
been observed by several researchers [Meier et al., 1998;
Sánchez-Vila et al., 1999; Leven and Dietrich, 2006] when
they applied conventional analysis to simulated pumping
tests. The geometric mean of the pseudo-local transmissiv-
ity is very close to the one estimated by the geostatistical
inverse approach. Due to more consistent assumptions in
the geostatistical inverse approach, it reveals more varia-
bility in the estimated lnT field than the conventional
approach. The estimated prior variance of lnT and the
variance of the resolved lnT field in inversion are higher
than their counterparts using the conventional approach.
Although the conventional approach leads to small varia-
tions in lnT, its results are within the uncertainty range of the
lnT field obtained by geostatistical inversion. Overall,
kriging lnT values obtained by type-curve analysis may be
acceptable in cases where detailed knowledge about the
variability of the parameter fields is not required.
[73] The estimate of lnT obtained by our inverse approach

is a smooth estimate, maximizing the posterior distribution
of the parameter fields. In case that the functional relation
between the measurements and the parameters is linear, this

estimate is identical to the mean of conditional realizations.
The higher the variance of the parameter fields, the more
nonlinear is their relations to drawdown. Then the most
likely value obtained by our method differs from the
conditional mean. The conditional mean may even not meet
the measurements within the given epistemic error. In such
cases, one may rely on other methods such as generation of
conditional realizations [e.g., Sahuquillo et al., 1992; Gutjahr
et al., 1994] or conditional nonlocal ensemble moment equa-
tions [Guadagnini and Neuman, 1999a, 1999b; Hernandez
et al., 2006], which are computationally more demanding
than the quasi-linear approach used in our study.
[74] Regarding storativity, the geometric means of S

obtained by the conventional approach and the geostatistical
inverse approach are close to each other. Both approaches
show strong variations, which appear unrealistic. Meier et
al. [1998], Sánchez-Vila et al. [1999], and Leven and
Dietrich, [2006] obtained similar results in analysis of
simulated pumping tests using a uniform storativity and
spatially variable transmissivities. In our estimation and in
previous studies [e.g., Sánchez-Vila et al., 1999], the aquifer
is assumed to be two-dimensional. This assumption is
consistent with data obtained in fully screened wells. The
unresolved vertical variability, however, may be the major
cause for the presumed bias in estimating the variability of
log storativity. Performing three-dimensional inversion may
help to overcome the difficulty of aliasing. Then, the trans-
missivity is replaced by conductivity and storativity by the
specific storage coefficient. Such analysis requires measure-
ments in all flow directions. Dealing with field data, we
cannot exclude that conceptual uncertainties (e.g. regarding
the validity of treating the system as a confined formation)
may contribute to biased results.
[75] It may be worth noting that, to our knowledge, no

reliable information about the variability of storativity
exists. Meier et al. [1998], among others, conjectured that
the variability should be small because of the small
variability of the quantities making up storativity. Experi-
mental data on the variability of lnS, however, hardly exists,
and our study indicates that such data may be biased.
[76] In this study, we have exclusively analyzed pumping

test data, trying to estimate both hydraulic parameter fields
and corresponding structural parameters. We could show
that the estimation of the correlation length depends on the
uncertainty of the measured data. If we trust the measure-
ments less, we obtain a larger correlation length. This
indicates that head information alone may be insufficient
to characterize the structure of the subsurface. Since our
geostatistical approach is based on Bayesian analysis,
information from other surveys, such as geophysical ones,
may be added. Such extensions, however, are beyond the
scope of the current study. Our approach of estimating
structural parameters requires that the type of geostatistical
model is known. In our study, we could rely on previous
analysis at the site. An alternative would be to fit parameters
of different correlation functions and choose the model
which performs best. However, we doubt that such choices
can be made with indirect information (in our case, the
temporal moments of drawdown) alone.

[77] Acknowledgments. We want to thank two anonymous reviewers
for their comments helping to improve the quality of the paper.

Figure 5. lnT at locations of head measurements. Circles
indicate the estimated lnT values of the geostatistical inverse
approach. Error bars correspond to ±1 standard deviation of
estimation. Crosses stand for the calculated pseudo-local
values of lnT obtained from the conventional method.
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