000057157 001__ 57157
000057157 005__ 20190625111723.0
000057157 0247_ $$2pmid$$apmid:17030463
000057157 0247_ $$2DOI$$a10.1016/j.jconhyd.2006.08.002
000057157 0247_ $$2WOS$$aWOS:000243269800005
000057157 0247_ $$2altmetric$$aaltmetric:21817196
000057157 037__ $$aPreJuSER-57157
000057157 041__ $$aeng
000057157 082__ $$a550
000057157 084__ $$2WoS$$aEnvironmental Sciences
000057157 084__ $$2WoS$$aGeosciences, Multidisciplinary
000057157 084__ $$2WoS$$aWater Resources
000057157 1001_ $$0P:(DE-Juel1)VDB36636$$aWehrhan, A.$$b0$$uFZJ
000057157 245__ $$aTransport of sulfadiazine in soil columns: Experiments and modelling approaches
000057157 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2007
000057157 300__ $$a107 - 135
000057157 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057157 3367_ $$2DataCite$$aOutput Types/Journal article
000057157 3367_ $$00$$2EndNote$$aJournal Article
000057157 3367_ $$2BibTeX$$aARTICLE
000057157 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057157 3367_ $$2DRIVER$$aarticle
000057157 440_0 $$03225$$aJournal of Contaminant Hydrology$$v87$$x0169-7722
000057157 500__ $$aRecord converted from VDB: 12.11.2012
000057157 520__ $$aAntibiotics, such as sulfadiazine, reach agricultural soils directly through manure of grazing livestock or indirectly through the spreading of manure or sewage sludge on the field. Knowledge about the fate of antibiotics in soils is crucial for assessing the environmental risk of these compounds, including possible transport to the groundwater. Transport of (14)C-labelled sulfadiazine was investigated in disturbed soil columns at a constant flow rate of 0.26 cm h(-1) near saturation. Sulfadiazine was applied in different concentrations for either a short or a long pulse duration. Breakthrough curves of sulfadiazine and the non-reactive tracer chloride were measured. At the end of the leaching period the soil concentration profiles were determined. The peak maxima of the breakthrough curves were delayed by a factor of 2 to 5 compared to chloride and the decreasing limbs are characterized by an extended tailing. However, the maximum relative concentrations differed as well as the eluted mass fractions, ranging from 18 to 83% after 500 h of leaching. To identify relevant sorption processes, breakthrough curves of sulfadiazine were fitted with a convective-dispersive transport model, considering different sorption concepts with one, two and three sorption sites. Breakthrough curves can be fitted best with a three-site sorption model, which includes two reversible kinetic and one irreversible sorption site. However, the simulated soil concentration profiles did not match the observations for all of the used models. Despite this incomplete process description, the obtained results have implications for the transport behavior of sulfadiazine in the field. Its leaching may be enhanced if it is frequently applied at higher concentrations.
000057157 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000057157 588__ $$aDataset connected to Web of Science, Pubmed
000057157 650_2 $$2MeSH$$aAdsorption
000057157 650_2 $$2MeSH$$aChlorides: analysis
000057157 650_2 $$2MeSH$$aModels, Biological
000057157 650_2 $$2MeSH$$aModels, Theoretical
000057157 650_2 $$2MeSH$$aSoil Pollutants: analysis
000057157 650_2 $$2MeSH$$aSulfadiazine: analysis
000057157 650_2 $$2MeSH$$aWater Movements
000057157 650_2 $$2MeSH$$aWater Pollutants, Chemical: analysis
000057157 650_7 $$00$$2NLM Chemicals$$aChlorides
000057157 650_7 $$00$$2NLM Chemicals$$aSoil Pollutants
000057157 650_7 $$00$$2NLM Chemicals$$aWater Pollutants, Chemical
000057157 650_7 $$068-35-9$$2NLM Chemicals$$aSulfadiazine
000057157 650_7 $$2WoSType$$aJ
000057157 65320 $$2Author$$asulfadiazine transport
000057157 65320 $$2Author$$aantibiotics
000057157 65320 $$2Author$$asoil column
000057157 65320 $$2Author$$abreakthrough curve
000057157 65320 $$2Author$$atransport models
000057157 65320 $$2Author$$asorption models
000057157 7001_ $$0P:(DE-Juel1)VDB724$$aKasteel, R.$$b1$$uFZJ
000057157 7001_ $$0P:(DE-Juel1)VDB57645$$aSimunek, J.$$b2$$uFZJ
000057157 7001_ $$0P:(DE-Juel1)129462$$aGroeneweg, J.$$b3$$uFZJ
000057157 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000057157 773__ $$0PERI:(DE-600)1494766-3$$a10.1016/j.jconhyd.2006.08.002$$gVol. 89, p. 107 - 135$$p107 - 135$$q89<107 - 135$$tJournal of contaminant hydrology$$v89$$x0169-7722$$y2007
000057157 8567_ $$uhttp://dx.doi.org/10.1016/j.jconhyd.2006.08.002
000057157 909CO $$ooai:juser.fz-juelich.de:57157$$pVDB
000057157 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000057157 9141_ $$y2007
000057157 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057157 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000057157 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000057157 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000057157 970__ $$aVDB:(DE-Juel1)89911
000057157 980__ $$aVDB
000057157 980__ $$aConvertedRecord
000057157 980__ $$ajournal
000057157 980__ $$aI:(DE-Juel1)IBG-3-20101118
000057157 980__ $$aI:(DE-82)080011_20140620
000057157 980__ $$aI:(DE-Juel1)VDB1045
000057157 980__ $$aUNRESTRICTED
000057157 981__ $$aI:(DE-Juel1)IBG-3-20101118
000057157 981__ $$aI:(DE-Juel1)VDB1045
000057157 981__ $$aI:(DE-Juel1)VDB1047