000057158 001__ 57158
000057158 005__ 20200423204450.0
000057158 017__ $$aThe definitive version is available at http://www.sciencedirect.com/science/journal/00221694
000057158 0247_ $$2DOI$$a10.1016/j.jhydrol.2007.04.013
000057158 0247_ $$2WOS$$aWOS:000248166500006
000057158 0247_ $$2Handle$$a2128/2538
000057158 037__ $$aPreJuSER-57158
000057158 041__ $$aeng
000057158 082__ $$a690
000057158 084__ $$2WoS$$aEngineering, Civil
000057158 084__ $$2WoS$$aGeosciences, Multidisciplinary
000057158 084__ $$2WoS$$aWater Resources
000057158 1001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b0$$uFZJ
000057158 245__ $$aMapping the spatial variation of soil water content at the field scale with different ground penetrating radar techniques
000057158 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2007
000057158 300__ $$a205 - 216
000057158 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057158 3367_ $$2DataCite$$aOutput Types/Journal article
000057158 3367_ $$00$$2EndNote$$aJournal Article
000057158 3367_ $$2BibTeX$$aARTICLE
000057158 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057158 3367_ $$2DRIVER$$aarticle
000057158 440_0 $$03413$$aJournal of Hydrology$$v340$$x0022-1694
000057158 500__ $$aRecord converted from VDB: 12.11.2012
000057158 520__ $$aTwo ground penetrating radar (GPR) techniques were used to estimate the shallow soil water content at the field scale. The first technique is based on the ground wave velocity measured with a bistatic impulse radar connected to 450 MHz ground-coupled antennas. The second technique is based on inverse modeling of an off-ground monostatic TEM horn antenna in the 0.8-1.6 GHz frequency range. Data were collected on a 8 by 9 m partially irrigated intensive research plot and along four 148.5 m transects. Time domain reflectometry, capacitance sensors, and volumetric soil samples were used as reference measurements. The aim of the study was to test the applicability of the ground wave method and the off-ground inverse modeling approach at the field scale for a soil with a silt Loam texture. The results for the ground wave technique were difficult to interpret due to the strong attenuation of the GPR signal, which is related to the silt Loam texture at the test site. The root mean square error of the ground wave technique was 0.076 m(3) m(-3) when compared to the TDR measurements and 0.102 m(3) m(-3) when compared with the volumetric soil samples. The off-ground monostatic GPR measured less within-field soil water content variability than the reference measurements, resulting in a root mean square error of 0.053 m(3) m(-3) when compared with the TDR measurements and an error of 0.051 m(3) m(-3) when compared with the volumetric soil samples. The variability between the two GPR measurements was even Larger with a RSME of 0.115 m(3) m(-3). In summary, both GPR methods did not provide adequate spatial information on soil water content variation at the field scale. The main reason for the deviating results of the ground wave method was the poor data quality due to high silt and clay content at the test site. Additional reasons were shallow reflections and the dry upper soil layer that cannot be detected by the ground wave method. In the case of off-ground GPR, the high sensitivity to the dry surface layer is the most likely reason for the observed deviations. The off-ground GPR results might be improved by using a different antenna that allows data acquisition in a lower frequency range. (C) 2007 Elsevier B.V. All rights reserved.
000057158 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000057158 588__ $$aDataset connected to Web of Science
000057158 650_7 $$2WoSType$$aJ
000057158 65320 $$2Author$$aGPR
000057158 65320 $$2Author$$aground wave
000057158 65320 $$2Author$$aoff-ground
000057158 65320 $$2Author$$aTDR
000057158 65320 $$2Author$$asoil water content
000057158 65320 $$2Author$$afield scale
000057158 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b1$$uFZJ
000057158 7001_ $$0P:(DE-Juel1)VDB54976$$aLambot, S.$$b2$$uFZJ
000057158 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b3$$uFZJ
000057158 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000057158 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2007.04.013$$gVol. 340, p. 205 - 216$$p205 - 216$$q340<205 - 216$$tJournal of hydrology$$v340$$x0022-1694$$y2007
000057158 8567_ $$uhttp://hdl.handle.net/2128/2538$$uhttp://dx.doi.org/10.1016/j.jhydrol.2007.04.013
000057158 8564_ $$uhttps://juser.fz-juelich.de/record/57158/files/GPR-Final-text.pdf$$yOpenAccess
000057158 8564_ $$uhttps://juser.fz-juelich.de/record/57158/files/GPR-Final-text.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000057158 8564_ $$uhttps://juser.fz-juelich.de/record/57158/files/GPR-Final-text.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000057158 8564_ $$uhttps://juser.fz-juelich.de/record/57158/files/GPR-Final-text.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000057158 909CO $$ooai:juser.fz-juelich.de:57158$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000057158 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000057158 9141_ $$y2007
000057158 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057158 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057158 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000057158 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000057158 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000057158 970__ $$aVDB:(DE-Juel1)89912
000057158 9801_ $$aFullTexts
000057158 980__ $$aVDB
000057158 980__ $$aJUWEL
000057158 980__ $$aConvertedRecord
000057158 980__ $$ajournal
000057158 980__ $$aI:(DE-Juel1)IBG-3-20101118
000057158 980__ $$aI:(DE-82)080011_20140620
000057158 980__ $$aI:(DE-Juel1)VDB1045
000057158 980__ $$aUNRESTRICTED
000057158 980__ $$aFullTexts
000057158 981__ $$aI:(DE-Juel1)IBG-3-20101118
000057158 981__ $$aI:(DE-Juel1)VDB1045
000057158 981__ $$aI:(DE-Juel1)VDB1047