000057171 001__ 57171
000057171 005__ 20180211190807.0
000057171 0247_ $$2pmid$$apmid:17337313
000057171 0247_ $$2DOI$$a10.1016/j.jconhyd.2007.01.009
000057171 0247_ $$2WOS$$aWOS:000248292400006
000057171 037__ $$aPreJuSER-57171
000057171 041__ $$aeng
000057171 082__ $$a550
000057171 084__ $$2WoS$$aEnvironmental Sciences
000057171 084__ $$2WoS$$aGeosciences, Multidisciplinary
000057171 084__ $$2WoS$$aWater Resources
000057171 1001_ $$0P:(DE-HGF)0$$aGargiulo, G.$$b0
000057171 245__ $$aBacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein
000057171 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2007
000057171 300__ $$a
000057171 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057171 3367_ $$2DataCite$$aOutput Types/Journal article
000057171 3367_ $$00$$2EndNote$$aJournal Article
000057171 3367_ $$2BibTeX$$aARTICLE
000057171 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057171 3367_ $$2DRIVER$$aarticle
000057171 440_0 $$03225$$aJournal of Contaminant Hydrology$$v92$$x0169-7722$$y3
000057171 500__ $$aRecord converted from VDB: 12.11.2012
000057171 520__ $$aUnsaturated (80% water saturated) packed column experiments were conducted to investigate the influence of grain size distribution and bacteria surface macromolecules on bacteria (Rhodococcus rhodochrous) transport and deposition mechanisms. Three sizes of silica sands were used in these transport experiments, and their median grain sizes were 607, 567, and 330 microm. The amount of retained bacteria increased with decreasing sand size, and most of the deposited bacteria were found adjacent to the column inlet. The deposition profiles were not consistent with predictions based on classical filtration theory. The experimental data could be accurately characterized using a mathematical model that accounted for first-order attachment, detachment, and time and depth-dependent straining processes. Visual observations of the bacteria deposition as well as mathematical modelling indicated that straining was the dominant mechanism of deposition in these sands (78-99.6% of the deposited bacteria), which may have been enhanced due to the tendency of this bacterium to form aggregates. An additional unsaturated experiment was conducted to better deduce the role of bacteria surface macromolecules on attachment and straining processes. In this case, the bacteria surface was treated using a proteolitic enzyme. This technique was assessed by examining the Fourier-transform infrared spectrum and hydrophobicity of untreated and enzyme treated cells. Both of these analytical procedures demonstrated that this enzymatic treatment removed the surface proteins and/or associated macromolecules. Transport and modelling studies conducted with the enzyme treated bacteria, revealed a decrease in attachment, but that straining was not significantly affected by this treatment.
000057171 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000057171 588__ $$aDataset connected to Web of Science, Pubmed
000057171 650_2 $$2MeSH$$aBacteria: chemistry
000057171 650_2 $$2MeSH$$aBacteria: metabolism
000057171 650_2 $$2MeSH$$aBacterial Adhesion
000057171 650_2 $$2MeSH$$aBacterial Proteins: chemistry
000057171 650_2 $$2MeSH$$aBacterial Proteins: metabolism
000057171 650_2 $$2MeSH$$aMembrane Proteins: chemistry
000057171 650_2 $$2MeSH$$aMembrane Proteins: metabolism
000057171 650_2 $$2MeSH$$aParticle Size
000057171 650_2 $$2MeSH$$aPorosity
000057171 650_2 $$2MeSH$$aSilicon Dioxide: chemistry
000057171 650_2 $$2MeSH$$aSurface Properties
000057171 650_7 $$00$$2NLM Chemicals$$aBacterial Proteins
000057171 650_7 $$00$$2NLM Chemicals$$aMembrane Proteins
000057171 650_7 $$07631-86-9$$2NLM Chemicals$$aSilicon Dioxide
000057171 650_7 $$2WoSType$$aJ
000057171 65320 $$2Author$$abacteria transport
000057171 65320 $$2Author$$aclassical filtration theory
000057171 65320 $$2Author$$aunsaturated flow
000057171 65320 $$2Author$$aRhodococcus rhodochrous
000057171 7001_ $$0P:(DE-HGF)0$$aBradford, S.$$b1
000057171 7001_ $$0P:(DE-HGF)0$$aSimunek, J.$$b2
000057171 7001_ $$0P:(DE-HGF)0$$aUstohal, P.$$b3
000057171 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000057171 7001_ $$0P:(DE-Juel1)129484$$aKlumpp, E.$$b5$$uFZJ
000057171 773__ $$0PERI:(DE-600)1494766-3$$a10.1016/j.jconhyd.2007.01.009$$gVol. 92$$q92$$tJournal of contaminant hydrology$$v92$$x0169-7722$$y2007
000057171 8567_ $$uhttp://dx.doi.org/10.1016/j.jconhyd.2007.01.009
000057171 909CO $$ooai:juser.fz-juelich.de:57171$$pVDB
000057171 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000057171 9141_ $$a$$y2007
000057171 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057171 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000057171 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000057171 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000057171 970__ $$aVDB:(DE-Juel1)89924
000057171 980__ $$aVDB
000057171 980__ $$aConvertedRecord
000057171 980__ $$ajournal
000057171 980__ $$aI:(DE-Juel1)IBG-3-20101118
000057171 980__ $$aI:(DE-82)080011_20140620
000057171 980__ $$aI:(DE-Juel1)VDB1045
000057171 980__ $$aUNRESTRICTED
000057171 981__ $$aI:(DE-Juel1)IBG-3-20101118
000057171 981__ $$aI:(DE-Juel1)VDB1045
000057171 981__ $$aI:(DE-Juel1)VDB1047