001     57345
005     20200402210349.0
024 7 _ |2 pmid
|a pmid:18045965
024 7 _ |2 pmc
|a pmc:PMC2098710
024 7 _ |2 DOI
|a 10.1529/biophysj.106.101386
024 7 _ |2 WOS
|a WOS:000251298100037
024 7 _ |a altmetric:21817297
|2 altmetric
037 _ _ |a PreJuSER-57345
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Solon, J.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Fibroblast adaptation and stiffness matching to soft elastic substrates
260 _ _ |a New York, NY
|b Rockefeller Univ. Press
|c 2007
300 _ _ |a 4453 - 4461
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Biophysical Journal
|x 0006-3495
|0 882
|y 12
|v 93
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Many cell types alter their morphology and gene expression profile when grown on chemically equivalent surfaces with different rigidities. One expectation of this change in morphology and composition is that the cell's internal stiffness, governed by cytoskeletal assembly and production of internal stresses, will change as a function of substrate stiffness. Atomic force microscopy was used to measure the stiffness of fibroblasts grown on fibronectin-coated polyacrylamide gels of shear moduli varying between 500 and 40,000 Pa. Indentation measurements show that the cells' elastic moduli were equal to, or slightly lower than, those of their substrates for a range of soft gels and reached a saturating value at a substrate rigidity of 20 kPa. The amount of cross-linked F-actin sedimenting at low centrifugal force also increased with substrate stiffness. Together with enhanced actin polymerization and cross-linking, active contraction of the cytoskeleton can also modulate stiffness by exploiting the nonlinear elasticity of semiflexible biopolymer networks. These results suggest that within a range of stiffness spanning that of soft tissues, fibroblasts tune their internal stiffness to match that of their substrate, and modulation of cellular stiffness by the rigidity of the environment may be a mechanism used to direct cell migration and wound repair.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adaptation, Physiological: physiology
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Cell Adhesion: physiology
650 _ 2 |2 MeSH
|a Cell Movement: physiology
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Elasticity
650 _ 2 |2 MeSH
|a Mechanotransduction, Cellular: physiology
650 _ 2 |2 MeSH
|a Mice
650 _ 2 |2 MeSH
|a Models, Biological
650 _ 2 |2 MeSH
|a NIH 3T3 Cells
650 _ 7 |a J
|2 WoSType
700 1 _ |a Levental, I.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Sengupta, K.
|b 2
|0 P:(DE-Juel1)VDB57655
|u fzj
700 1 _ |a Georges, P. C.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Janmey, P. A.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1529/biophysj.106.101386
|g Vol. 93, p. 4453 - 4461
|p 4453 - 4461
|q 93<4453 - 4461
|0 PERI:(DE-600)1477214-0
|t Biophysical journal
|v 93
|y 2007
|x 0006-3495
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2098710
909 C O |o oai:juser.fz-juelich.de:57345
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
970 _ _ |a VDB:(DE-Juel1)90178
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21