000057366 001__ 57366
000057366 005__ 20180211174616.0
000057366 0247_ $$2DOI$$a10.1016/j.physc.2006.03.094
000057366 0247_ $$2WOS$$aWOS:000238875600044
000057366 037__ $$aPreJuSER-57366
000057366 041__ $$aeng
000057366 082__ $$a530
000057366 084__ $$2WoS$$aPhysics, Applied
000057366 1001_ $$0P:(DE-HGF)0$$aLaxdale, R. E.$$b0
000057366 245__ $$aMagnetic field studies in the ISAC-II cryomodule
000057366 260__ $$aAmsterdam$$bNorth-Holland Physics Publ.$$c2006
000057366 300__ $$a
000057366 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057366 3367_ $$2DataCite$$aOutput Types/Journal article
000057366 3367_ $$00$$2EndNote$$aJournal Article
000057366 3367_ $$2BibTeX$$aARTICLE
000057366 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057366 3367_ $$2DRIVER$$aarticle
000057366 440_0 $$04908$$aPhysica C$$v441$$x0921-4534$$y1
000057366 500__ $$aRecord converted from VDB: 12.11.2012
000057366 520__ $$aThe medium beta section of the ISAC-II heavy ion accelerator consists of five cryomodules each containing four quarter wave bulk niobium resonators and one superconducting solenoid. The 9 T solenoid is not shielded but is equipped with bucking coils to reduce the magnetic field in the neighbouring rf cavities. A prototype cryomodule has been designed and assembled at TRIUMF. The cryomodule vacuum space shares the cavity vacuum and contains a mu-metal shield, an LN2 cooled, copper, thermal shield, plus the cold mass and support system. Several cold tests have been done to characterize the cryomodule. Early operating experience with a high field solenoid inside a cryomodule containing SRF cavities will be given. The results include measurements of the passive magnetic field in the cryomodule. We also estimate changes in the magnetic field during the test due to trapped flux in the solenoid. Residual field reduction due to hysteresis cycling of the solenoid has been demonstrated. (c) 2006 Elsevier B.V. All rights reserved.
000057366 536__ $$0G:(DE-Juel1)FUEK413$$2G:(DE-HGF)$$aPhysik der Hadronen und Kerne$$cP53$$x0
000057366 588__ $$aDataset connected to Web of Science
000057366 650_7 $$2WoSType$$aJ
000057366 65320 $$2Author$$amagnetic shielding
000057366 65320 $$2Author$$aremnant field
000057366 65320 $$2Author$$asuperconducting solenoid
000057366 65320 $$2Author$$amu-metal
000057366 7001_ $$0P:(DE-HGF)0$$aBoussier, B.$$b1
000057366 7001_ $$0P:(DE-HGF)0$$aFong, K.$$b2
000057366 7001_ $$0P:(DE-HGF)0$$aSekachev, I.$$b3
000057366 7001_ $$0P:(DE-HGF)0$$aClark, H. L.$$b4
000057366 7001_ $$0P:(DE-HGF)0$$aZvyagintsev, V.$$b5
000057366 7001_ $$0P:(DE-Juel1)VDB22203$$aEichhorn, R.$$b6$$uFZJ
000057366 773__ $$0PERI:(DE-600)1467152-9$$a10.1016/j.physc.2006.03.094$$gVol. 441$$q441$$tPhysica / C$$v441$$x0921-4534$$y2006
000057366 8567_ $$uhttp://dx.doi.org/10.1016/j.physc.2006.03.094
000057366 909CO $$ooai:juser.fz-juelich.de:57366$$pVDB
000057366 9131_ $$0G:(DE-Juel1)FUEK413$$bStruktur der Materie$$kP53$$lPhysik der Hadronen und Kerne$$vPhysik der Hadronen und Kerne$$x0
000057366 9141_ $$aNachtrag$$y2006
000057366 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057366 9201_ $$0I:(DE-Juel1)VDB22$$d31.12.2006$$gIKP$$kIKP-GG$$lKernphysikalische Großgeräte$$x1
000057366 970__ $$aVDB:(DE-Juel1)90206
000057366 980__ $$aVDB
000057366 980__ $$aConvertedRecord
000057366 980__ $$ajournal
000057366 980__ $$aI:(DE-Juel1)IKP-4-20111104
000057366 980__ $$aUNRESTRICTED
000057366 981__ $$aI:(DE-Juel1)IKP-4-20111104