001     57459
005     20240709081607.0
024 7 _ |2 DOI
|a 10.1080/02786820600714346
024 7 _ |2 WOS
|a WOS:000238473000005
037 _ _ |a PreJuSER-57459
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Engineering, Chemical
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Meteorology & Atmospheric Sciences
100 1 _ |a Sotiropoulou, R. E. P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Modeling new particle formation during air pollution episodes: impacts on aerosol and cloud condensation nuclei
260 _ _ |a Philadelphia, Pa
|b Taylor & Francis
|c 2006
300 _ _ |a 557 - 572
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Aerosol Science and Technology
|x 0278-6826
|0 13041
|y 7
|v 40
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The impact of new particle formation on regional air quality and CCN formation is for the first time explored using the UAM-AERO air quality model. New particles are formed by ternary nucleation of sulfuric acid, ammonia and water; subsequent growth of clusters to large sizes is driven by condensation of sulfuric acid and organic vapors, as described by the recently developed nano-Kohler theory. Application of the model in Athens (GAA) and Marseilles (GMA) reveals higher sulfuric acid condensational sink and gaseous sulfuric acid (hence nucleation rate) for the latter. However, limited quantities of organic vapors in the GMA inhibit the growth of the formed clusters; therefore new particle formation is more efficient in the GAA. A sensitivity analysis demonstrates that (1) uncertainty in vaporization enthalpy does not affect organic carbon formed by nucleation, and (2) an accommodation coefficient of unity gives excellent agreement of condensation sink with in-situ observations. Nucleation affects the aerosol size distribution, and can be an important contributor to CCN; locally it can be more important than chemical ageing of pre-existing aerosols.
536 _ _ |a Atmosphäre und Klima
|c P22
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK406
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Tagaris, E.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Pilinis, C.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Anttila, T.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB45939
700 1 _ |a Kulmala, M.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1080/02786820600714346
|g Vol. 40, p. 557 - 572
|p 557 - 572
|q 40<557 - 572
|0 PERI:(DE-600)2023330-9
|t Aerosol science and technology
|v 40
|y 2006
|x 0278-6826
856 7 _ |u http://dx.doi.org/10.1080/02786820600714346
909 C O |o oai:juser.fz-juelich.de:57459
|p VDB
913 1 _ |k P22
|v Atmosphäre und Klima
|l Atmosphäre und Klima
|b Umwelt
|z fortgesetzt als P23
|0 G:(DE-Juel1)FUEK406
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ICG-II
|l Troposphäre
|d 31.12.2006
|g ICG
|0 I:(DE-Juel1)VDB48
|x 1
970 _ _ |a VDB:(DE-Juel1)90373
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21