000057546 001__ 57546
000057546 005__ 20211109141620.0
000057546 0247_ $$2DOI$$a10.1088/1367-2630/8/5/065
000057546 0247_ $$2WOS$$aWOS:000237293800004
000057546 0247_ $$2Handle$$a2128/28964
000057546 037__ $$aPreJuSER-57546
000057546 041__ $$aeng
000057546 082__ $$a530
000057546 084__ $$2WoS$$aPhysics, Multidisciplinary
000057546 1001_ $$0P:(DE-HGF)0$$aYu, D. K.$$b0
000057546 245__ $$aThe stability of vicinal surfaces and the equilibrium crystal shape of Pb by first principles theory
000057546 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2006
000057546 300__ $$a65
000057546 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057546 3367_ $$2DataCite$$aOutput Types/Journal article
000057546 3367_ $$00$$2EndNote$$aJournal Article
000057546 3367_ $$2BibTeX$$aARTICLE
000057546 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057546 3367_ $$2DRIVER$$aarticle
000057546 440_0 $$08201$$aNew Journal of Physics$$v8$$x1367-2630
000057546 500__ $$aRecord converted from VDB: 12.11.2012
000057546 520__ $$aThe orientation-dependent surface energies of fcc Pb for more than 30 vicinal orientations, distributed over the [110] and [001] zones of the stereographic triangle, have been studied by density-functional theory. For bulk-truncated structures almost all vicinal surfaces are found to be unstable and would facet into (111) and (100) orientations. However, after surface relaxation, all vicinal surfaces are stable relative to faceting into (111) and (100) orientations. There are also regions of relaxed vicinal surfaces which will facet into nearby stable vicinal surfaces. Overall, surface relaxation significantly affects the equilibrium crystal shape (ECS) of Pb. In both the [110] and [001] crystallographic zones the (110), (112), (221), and (023) facets are found on the ECS only after relaxation, in addition to (111) and (100). This result is in agreement with the experimental ECS of Pb at 353 K. Step formation energies for various vicinal orientations are estimated from facet diameters of the theoretical ECS and compared with experimental data.
000057546 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000057546 588__ $$aDataset connected to Web of Science
000057546 650_7 $$2WoSType$$aJ
000057546 7001_ $$0P:(DE-Juel1)VDB5490$$aBonzel, D. I.$$b1$$uFZJ
000057546 7001_ $$0P:(DE-HGF)0$$aScheffler, M.$$b2
000057546 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/8/5/065$$gVol. 8, p. 65$$p65$$q8<65$$tNew journal of physics$$v8$$x1367-2630$$y2006
000057546 8567_ $$uhttp://dx.doi.org/10.1088/1367-2630/8/5/065
000057546 8564_ $$uhttps://juser.fz-juelich.de/record/57546/files/Yu_2006_New_J._Phys._8_65.pdf$$yOpenAccess
000057546 909CO $$ooai:juser.fz-juelich.de:57546$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000057546 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000057546 9141_ $$aNachtrag$$y2006
000057546 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057546 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057546 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x1
000057546 970__ $$aVDB:(DE-Juel1)90562
000057546 980__ $$aVDB
000057546 980__ $$aConvertedRecord
000057546 980__ $$ajournal
000057546 980__ $$aI:(DE-Juel1)PGI-3-20110106
000057546 980__ $$aUNRESTRICTED
000057546 9801_ $$aFullTexts
000057546 981__ $$aI:(DE-Juel1)PGI-3-20110106