001     57549
005     20180211175026.0
024 7 _ |2 DOI
|a 10.1080/14786430500519780
024 7 _ |2 WOS
|a WOS:000237221200003
037 _ _ |a PreJuSER-57549
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Mechanics
084 _ _ |2 WoS
|a Metallurgy & Metallurgical Engineering
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Ding, Y.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB15124
245 _ _ |a Translation and orientation domain boundaries in La2/3Ca1/3MnO3
260 _ _ |a London [u.a.]
|b Taylor and Francis
|c 2006
300 _ _ |a 2329 - 2342
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Philosophical Magazine
|x 0141-8610
|0 11501
|y 16
|v 86
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a From crystal structure, three types of translation and two types of orientation domain boundaries are expected in La2/3Ca1/3MnO3 as a result of phase transition. However, the most easily observed domain boundaries in the bulk samples are [1/2 1/2 1/2] translation boundaries ( or antiphase boundaries) and 90 degrees domain boundaries, while the [1/2 0 1/2] and [0 1/2 0] translation boundaries were rarely observed. In this paper, this phenomenon is explained by considering the tilting modes of the oxygen octahedra in the structure. We found that there is no distortion to the nearby oxygen octahedra if the [1/2 1/2 1/2] translation boundaries take the ( 010) boundary planes and the 90 degrees domain boundaries are in the {101} planes, making them low-energy boundary planes and, thus, are easy to form. On the other hand, the [1/2 0 1/2] and [0 1/2 0] translation boundaries introduce a distortion in the oxygen octahedra, which requires breaking the tilting modes in the boundary areas and, therefore, they are high-energy boundary planes, which are rarely observed. The above-expected results are supported by our transmission electron microscopy data.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Wang, Z. L.
|b 1
|0 P:(DE-HGF)0
773 _ _ |a 10.1080/14786430500519780
|g Vol. 86, p. 2329 - 2342
|p 2329 - 2342
|q 86<2329 - 2342
|0 PERI:(DE-600)2001649-9
|t Philosophical magazine / A
|v 86
|y 2006
|x 0141-8610
856 7 _ |u http://dx.doi.org/10.1080/14786430500519780
909 C O |o oai:juser.fz-juelich.de:57549
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-IEM
|l Elektronische Materialien
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB321
|x 1
970 _ _ |a VDB:(DE-Juel1)90565
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21