000057553 001__ 57553
000057553 005__ 20240708133754.0
000057553 0247_ $$2DOI$$a10.1016/j.nucengdes.2005.10.021
000057553 0247_ $$2WOS$$aWOS:000236894500019
000057553 037__ $$aPreJuSER-57553
000057553 041__ $$aeng
000057553 082__ $$a620
000057553 084__ $$2WoS$$aNuclear Science & Technology
000057553 1001_ $$0P:(DE-HGF)0$$aKuijper, J. C.$$b0
000057553 245__ $$aHTGR reactor physics and fuel cycle studies
000057553 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2006
000057553 300__ $$a
000057553 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057553 3367_ $$2DataCite$$aOutput Types/Journal article
000057553 3367_ $$00$$2EndNote$$aJournal Article
000057553 3367_ $$2BibTeX$$aARTICLE
000057553 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057553 3367_ $$2DRIVER$$aarticle
000057553 440_0 $$04639$$aNuclear Engineering and Design$$v236$$x0029-5493$$y5
000057553 500__ $$aRecord converted from VDB: 12.11.2012
000057553 520__ $$aThe high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the "HTR-N" project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and hexagonal block-type HTGR types. It is shown that several HTGR concepts are quite promising as systems for the incineration of plutonium and possibly minor actinides.These studies were mainly concerned with the investigation and intercomparison of the plutonium and actinide burning capabilities of a number of HTGR concepts and associated fuel cycles, with emphasis on the use of civil plutonium from spent LWR uranium fuel (first generation Pu) and from spent LWR MOX fuel (second generation Pu). Besides, the "HTR-N" project also included activities concerning the validation of computational tools and the qualification of models. Indeed, it is essential that validated analytical tools are available in the European nuclear community to perform conceptual design studies, industrial calculations (reload calculations and the associated core follow), safety analyses for licensing, etc., for new fuel cycles aiming at plutonium and minor actinide (MA) incineration/transinutation without multi-reprocessing of the discharged fuel.These validation and qualification activities have been centred round the two HTGR systems currently in operation, viz. the HTR-10 and the HTTR. The re-calculation of the HTTR first criticality with a Monte Carlo neutron transport code now yields acceptable correspondence with experimental data. Also calculations by 3D diffusion theory codes yield acceptable results. Special attention, however, has to be given to the modelling of neutron streaming effects. For the HTR-10 the analyses focused on first criticality, temperature coefficients and control rod worth. Also in these studies a good correspondence between calculation and experiment is observed for the 3D diffusion theory codes. (c) 2006 Elsevier B.V. All rights reserved.
000057553 536__ $$0G:(DE-Juel1)FUEK404$$2G:(DE-HGF)$$aNukleare Sicherheitsforschung$$cP14$$x0
000057553 588__ $$aDataset connected to Web of Science
000057553 650_7 $$2WoSType$$aJ
000057553 7001_ $$0P:(DE-HGF)0$$aRaepsaet, X.$$b1
000057553 7001_ $$0P:(DE-HGF)0$$ade Haas, J. B. M.$$b2
000057553 7001_ $$0P:(DE-Juel1)130443$$aVon Lensa, W.$$b3$$uFZJ
000057553 7001_ $$0P:(DE-Juel1)VDB1187$$aOhlig, U.$$b4$$uFZJ
000057553 7001_ $$0P:(DE-Juel1)VDB58227$$aRütten, H.-J.$$b5$$uFZJ
000057553 7001_ $$0P:(DE-Juel1)VDB177$$aBrockmann, H.$$b6$$uFZJ
000057553 7001_ $$0P:(DE-HGF)0$$aDamian, F.$$b7
000057553 7001_ $$0P:(DE-HGF)0$$aDolci, F.$$b8
000057553 7001_ $$0P:(DE-HGF)0$$aBernnat, W.$$b9
000057553 7001_ $$0P:(DE-HGF)0$$aOppe, J.$$b10
000057553 7001_ $$0P:(DE-HGF)0$$aKloosterman, J. L.$$b11
000057553 7001_ $$0P:(DE-HGF)0$$aCerullo, N.$$b12
000057553 7001_ $$0P:(DE-HGF)0$$aLomonaco, G.$$b13
000057553 7001_ $$0P:(DE-HGF)0$$aNegrini, A.$$b14
000057553 7001_ $$0P:(DE-HGF)0$$aMagill, J.$$b15
000057553 7001_ $$0P:(DE-HGF)0$$aSeiler, R.$$b16
000057553 773__ $$0PERI:(DE-600)2001319-X$$a10.1016/j.nucengdes.2005.10.021$$gVol. 236$$q236$$tNuclear engineering and design$$v236$$x0029-5493$$y2006
000057553 8567_ $$uhttp://dx.doi.org/10.1016/j.nucengdes.2005.10.021
000057553 909CO $$ooai:juser.fz-juelich.de:57553$$pVDB
000057553 9131_ $$0G:(DE-Juel1)FUEK404$$bEnergie$$kP14$$lNukleare Sicherheitsforschung$$vNukleare Sicherheitsforschung$$x0
000057553 9141_ $$aNachtrag$$y2006
000057553 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057553 9201_ $$0I:(DE-Juel1)VDB182$$d31.12.2006$$gISR$$kISR$$lInstitut für Sicherheitsforschung und Reaktortechnik$$x1
000057553 970__ $$aVDB:(DE-Juel1)90569
000057553 980__ $$aVDB
000057553 980__ $$aConvertedRecord
000057553 980__ $$ajournal
000057553 980__ $$aI:(DE-Juel1)IEK-6-20101013
000057553 980__ $$aUNRESTRICTED
000057553 981__ $$aI:(DE-Juel1)IFN-2-20101013
000057553 981__ $$aI:(DE-Juel1)IEK-6-20101013