001     57565
005     20240709094301.0
024 7 _ |2 DOI
|a 10.1016/j.surfcoat.2005.05.001
024 7 _ |2 WOS
|a WOS:000236590300044
037 _ _ |a PreJuSER-57565
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Wakui, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB7673
245 _ _ |a Strain dependent stiffness of plasma sprayed thermal barrier coatings
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2006
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface and Coatings Technology
|x 0257-8972
|0 5670
|y 16
|v 200
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The strain dependency of the stiffness of bonded and free-standing thermal barrier coatings (TBCs) was analyzed using four point bending. The deformation in top and side face of the material was observed in-situ using optical and scanning electron microscopy. For freestanding TBCs, the strain of the tensile part above the neutral bending axis was larger than on the compressive part. Furthermore, the ratio of strain of tensile to compressive part increased with increasing applied strain and the position of the neutral axis sifted further to compressive side. The stiffness for free-standing TBC changed from 8 to 17 GPa with applied strain. For bonded TBCs, the average stiffness under tensile or compressive bending was determined considering residual stresses. The stiffness of the bonded TBCs increased from 12 to 38 GPa as the applied strain was increased from -0.75 to 0.11%. This strong strain dependency of the TBC stiffness can be associated with the large number of micro-cracks and pores. Finally, a unifying stress-strain curve is presented for strains from -0.75 to 0.23% obtained using results of the free-standing and bonded TBC. (c) 2005 Elsevier B.V All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a plasma spraying
653 2 0 |2 Author
|a TBC
653 2 0 |2 Author
|a stiffness
700 1 _ |a Malzbender, J.
|b 1
|u FZJ
|0 P:(DE-Juel1)129755
700 1 _ |a Steinbrech, R. W.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB1573
773 _ _ |a 10.1016/j.surfcoat.2005.05.001
|g Vol. 200
|q 200
|0 PERI:(DE-600)1502240-7
|t Surface and coatings technology
|v 200
|y 2006
|x 0257-8972
856 7 _ |u http://dx.doi.org/10.1016/j.surfcoat.2005.05.001
909 C O |o oai:juser.fz-juelich.de:57565
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IWV-2
|l Werkstoffstruktur und Eigenschaften
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB2
|x 1
970 _ _ |a VDB:(DE-Juel1)90584
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21