001     57566
005     20240709094301.0
024 7 _ |2 DOI
|a 10.1016/j.surfcoat.2005.07.002
024 7 _ |2 WOS
|a WOS:000236648800030
024 7 _ |a altmetric:21817410
|2 altmetric
037 _ _ |a PreJuSER-57566
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Wakui, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB7673
245 _ _ |a Mechanical testing of thermally stressed materials with rough interfaces: mechanically induced delamination cracking in thermal barrier composites
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2006
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface and Coatings Technology
|x 0257-8972
|0 5670
|y 18
|v 200
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Interfacial fracture of thermally stressed layered composites is often characterized by application of a mechanical load. Here a novel mechanical testing method was applied to study the delamination of thermal barrier composites. With a geometry similar to the double cantilever beam compressive loading was transferred into tensile stress normal to the average location of the interfaces. As-sprayed and annealed composites were tested. Fracture relevant microstructural changes and crack growth in the top coat and at the interface between bond coat and top coat were monitored using scanning electron microscopy. The local strain situation was determined via the analysis of the image contrast. Finite element modeling was used to illustrate the effect of the interface roughness on the failure origin. Similar as reported in literature for thermal loading, mechanical loading of a rough interface causes high stresses in interfacial roughness peaks and valleys. However, contrary to thermal loading, the position of the maximum in tensile and compressive stress is independent of the existence of a thermally grown oxide. Implications for the mechanical and then-no-mechanical testing of layered composites are discussed. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a delamination
653 2 0 |2 Author
|a interface
653 2 0 |2 Author
|a roughness
653 2 0 |2 Author
|a thermal barrier coating
700 1 _ |a Malzbender, J.
|b 1
|u FZJ
|0 P:(DE-Juel1)129755
700 1 _ |a Steinbrech, R. W.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB1573
773 _ _ |a 10.1016/j.surfcoat.2005.07.002
|g Vol. 200
|q 200
|0 PERI:(DE-600)1502240-7
|t Surface and coatings technology
|v 200
|y 2006
|x 0257-8972
856 7 _ |u http://dx.doi.org/10.1016/j.surfcoat.2005.07.002
909 C O |o oai:juser.fz-juelich.de:57566
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IWV-2
|l Werkstoffstruktur und Eigenschaften
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB2
|x 1
970 _ _ |a VDB:(DE-Juel1)90585
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IEK-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21