000005759 001__ 5759
000005759 005__ 20240712101040.0
000005759 0247_ $$2pmid$$apmid:19759617
000005759 0247_ $$2DOI$$a10.1038/nature08292
000005759 0247_ $$2WOS$$aWOS:000269828100036
000005759 0247_ $$2altmetric$$aaltmetric:4325993
000005759 037__ $$aPreJuSER-5759
000005759 041__ $$aeng
000005759 082__ $$a070
000005759 084__ $$2WoS$$aMultidisciplinary Sciences
000005759 1001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, A.$$b0$$uFZJ
000005759 245__ $$aNew particle formation in forests inhibited  by isoprene emissions
000005759 260__ $$aLondon [u.a.]$$bNature Publising Group$$c2009
000005759 300__ $$a381 - 384
000005759 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005759 3367_ $$2DataCite$$aOutput Types/Journal article
000005759 3367_ $$00$$2EndNote$$aJournal Article
000005759 3367_ $$2BibTeX$$aARTICLE
000005759 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005759 3367_ $$2DRIVER$$aarticle
000005759 440_0 $$04484$$aNature$$v461$$x0028-0836
000005759 500__ $$aWe gratefully acknowledge support by the European Commission (IP-EUCAARI, contract number 036833-2).
000005759 520__ $$aIt has been suggested that volatile organic compounds (VOCs) are involved in organic aerosol formation, which in turn affects radiative forcing and climate. The most abundant VOCs emitted by terrestrial vegetation are isoprene and its derivatives, such as monoterpenes and sesquiterpenes. New particle formation in boreal regions is related to monoterpene emissions and causes an estimated negative radiative forcing of about -0.2 to -0.9 W m(-2). The annual variation in aerosol growth rates during particle nucleation events correlates with the seasonality of monoterpene emissions of the local vegetation, with a maximum during summer. The frequency of nucleation events peaks, however, in spring and autumn. Here we present evidence from simulation experiments conducted in a plant chamber that isoprene can significantly inhibit new particle formation. The process leading to the observed decrease in particle number concentration is linked to the high reactivity of isoprene with the hydroxyl radical (OH). The suppression is stronger with higher concentrations of isoprene, but with little dependence on the specific VOC mixture emitted by trees. A parameterization of the observed suppression factor as a function of isoprene concentration suggests that the number of new particles produced depends on the OH concentration and VOCs involved in the production of new particles undergo three to four steps of oxidation by OH. Our measurements simulate conditions that are typical for forested regions and may explain the observed seasonality in the frequency of aerosol nucleation events, with a lower number of nucleation events during summer compared to autumn and spring. Biogenic emissions of isoprene are controlled by temperature and light, and if the relative isoprene abundance of biogenic VOC emissions increases in response to climate change or land use change, the new particle formation potential may decrease, thus damping the aerosol negative radiative forcing effect.
000005759 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000005759 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x1
000005759 588__ $$aDataset connected to Web of Science, Pubmed
000005759 650_2 $$2MeSH$$aAerosols: analysis
000005759 650_2 $$2MeSH$$aAerosols: metabolism
000005759 650_2 $$2MeSH$$aAir: analysis
000005759 650_2 $$2MeSH$$aBetula: drug effects
000005759 650_2 $$2MeSH$$aBetula: metabolism
000005759 650_2 $$2MeSH$$aButadienes: analysis
000005759 650_2 $$2MeSH$$aButadienes: pharmacology
000005759 650_2 $$2MeSH$$aCarbon: analysis
000005759 650_2 $$2MeSH$$aEnvironment, Controlled
000005759 650_2 $$2MeSH$$aFagus: drug effects
000005759 650_2 $$2MeSH$$aFagus: metabolism
000005759 650_2 $$2MeSH$$aHemiterpenes: analysis
000005759 650_2 $$2MeSH$$aHemiterpenes: pharmacology
000005759 650_2 $$2MeSH$$aHemiterpenes: secretion
000005759 650_2 $$2MeSH$$aHydroxyl Radical: analysis
000005759 650_2 $$2MeSH$$aHydroxyl Radical: metabolism
000005759 650_2 $$2MeSH$$aLight
000005759 650_2 $$2MeSH$$aMonoterpenes: metabolism
000005759 650_2 $$2MeSH$$aMonoterpenes: pharmacology
000005759 650_2 $$2MeSH$$aOxidation-Reduction
000005759 650_2 $$2MeSH$$aPentanes: analysis
000005759 650_2 $$2MeSH$$aPentanes: pharmacology
000005759 650_2 $$2MeSH$$aPicea: drug effects
000005759 650_2 $$2MeSH$$aPicea: metabolism
000005759 650_2 $$2MeSH$$aSeasons
000005759 650_2 $$2MeSH$$aTemperature
000005759 650_2 $$2MeSH$$aTime Factors
000005759 650_2 $$2MeSH$$aTrees: drug effects
000005759 650_2 $$2MeSH$$aTrees: metabolism
000005759 650_2 $$2MeSH$$aVolatile Organic Compounds: analysis
000005759 650_2 $$2MeSH$$aVolatile Organic Compounds: metabolism
000005759 650_7 $$00$$2NLM Chemicals$$aAerosols
000005759 650_7 $$00$$2NLM Chemicals$$aButadienes
000005759 650_7 $$00$$2NLM Chemicals$$aHemiterpenes
000005759 650_7 $$00$$2NLM Chemicals$$aMonoterpenes
000005759 650_7 $$00$$2NLM Chemicals$$aPentanes
000005759 650_7 $$00$$2NLM Chemicals$$aVolatile Organic Compounds
000005759 650_7 $$03352-57-6$$2NLM Chemicals$$aHydroxyl Radical
000005759 650_7 $$07440-44-0$$2NLM Chemicals$$aCarbon
000005759 650_7 $$078-79-5$$2NLM Chemicals$$aisoprene
000005759 650_7 $$2WoSType$$aJ
000005759 7001_ $$0P:(DE-Juel1)VDB1780$$aWildt, J.$$b1$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)VDB46017$$aDal Maso, M.$$b2$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)VDB67355$$aHohaus, T.$$b3$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)129345$$aKleist, E.$$b4$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)16346$$aMentel, T. F.$$b5$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)5344$$aTillmann, R.$$b6$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)VDB56253$$aUerlings, R.$$b7$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)129402$$aSchurr, U.$$b8$$uFZJ
000005759 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b9$$uFZJ
000005759 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/nature08292$$gVol. 461, p. 381 - 384$$p381 - 384$$q461<381 - 384$$tNature <London>$$v461$$x0028-0836$$y2009
000005759 8567_ $$uhttp://dx.doi.org/10.1038/nature08292
000005759 8564_ $$uhttps://juser.fz-juelich.de/record/5759/files/FZJ-5759.pdf$$yRestricted$$zPublished final document.
000005759 909CO $$ooai:juser.fz-juelich.de:5759$$pVDB
000005759 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005759 9141_ $$y2009
000005759 9131_ $$0G:(DE-Juel1)FUEK406$$aDE-HGF$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000005759 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x1
000005759 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000005759 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x2
000005759 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x3
000005759 970__ $$aVDB:(DE-Juel1)113584
000005759 980__ $$aVDB
000005759 980__ $$aConvertedRecord
000005759 980__ $$ajournal
000005759 980__ $$aI:(DE-Juel1)IEK-8-20101013
000005759 980__ $$aI:(DE-Juel1)IBG-2-20101118
000005759 980__ $$aI:(DE-82)080012_20140620
000005759 980__ $$aUNRESTRICTED
000005759 981__ $$aI:(DE-Juel1)ICE-3-20101013
000005759 981__ $$aI:(DE-Juel1)IEK-8-20101013
000005759 981__ $$aI:(DE-Juel1)IBG-2-20101118
000005759 981__ $$aI:(DE-Juel1)VDB1346