001     5759
005     20240712101040.0
024 7 _ |2 pmid
|a pmid:19759617
024 7 _ |2 DOI
|a 10.1038/nature08292
024 7 _ |2 WOS
|a WOS:000269828100036
024 7 _ |a altmetric:4325993
|2 altmetric
037 _ _ |a PreJuSER-5759
041 _ _ |a eng
082 _ _ |a 070
084 _ _ |2 WoS
|a Multidisciplinary Sciences
100 1 _ |0 P:(DE-Juel1)4528
|a Kiendler-Scharr, A.
|b 0
|u FZJ
245 _ _ |a New particle formation in forests inhibited by isoprene emissions
260 _ _ |a London [u.a.]
|b Nature Publising Group
|c 2009
300 _ _ |a 381 - 384
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4484
|a Nature
|v 461
|x 0028-0836
500 _ _ |a We gratefully acknowledge support by the European Commission (IP-EUCAARI, contract number 036833-2).
520 _ _ |a It has been suggested that volatile organic compounds (VOCs) are involved in organic aerosol formation, which in turn affects radiative forcing and climate. The most abundant VOCs emitted by terrestrial vegetation are isoprene and its derivatives, such as monoterpenes and sesquiterpenes. New particle formation in boreal regions is related to monoterpene emissions and causes an estimated negative radiative forcing of about -0.2 to -0.9 W m(-2). The annual variation in aerosol growth rates during particle nucleation events correlates with the seasonality of monoterpene emissions of the local vegetation, with a maximum during summer. The frequency of nucleation events peaks, however, in spring and autumn. Here we present evidence from simulation experiments conducted in a plant chamber that isoprene can significantly inhibit new particle formation. The process leading to the observed decrease in particle number concentration is linked to the high reactivity of isoprene with the hydroxyl radical (OH). The suppression is stronger with higher concentrations of isoprene, but with little dependence on the specific VOC mixture emitted by trees. A parameterization of the observed suppression factor as a function of isoprene concentration suggests that the number of new particles produced depends on the OH concentration and VOCs involved in the production of new particles undergo three to four steps of oxidation by OH. Our measurements simulate conditions that are typical for forested regions and may explain the observed seasonality in the frequency of aerosol nucleation events, with a lower number of nucleation events during summer compared to autumn and spring. Biogenic emissions of isoprene are controlled by temperature and light, and if the relative isoprene abundance of biogenic VOC emissions increases in response to climate change or land use change, the new particle formation potential may decrease, thus damping the aerosol negative radiative forcing effect.
536 _ _ |0 G:(DE-Juel1)FUEK406
|2 G:(DE-HGF)
|a Atmosphäre und Klima
|c P22
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Aerosols: analysis
650 _ 2 |2 MeSH
|a Aerosols: metabolism
650 _ 2 |2 MeSH
|a Air: analysis
650 _ 2 |2 MeSH
|a Betula: drug effects
650 _ 2 |2 MeSH
|a Betula: metabolism
650 _ 2 |2 MeSH
|a Butadienes: analysis
650 _ 2 |2 MeSH
|a Butadienes: pharmacology
650 _ 2 |2 MeSH
|a Carbon: analysis
650 _ 2 |2 MeSH
|a Environment, Controlled
650 _ 2 |2 MeSH
|a Fagus: drug effects
650 _ 2 |2 MeSH
|a Fagus: metabolism
650 _ 2 |2 MeSH
|a Hemiterpenes: analysis
650 _ 2 |2 MeSH
|a Hemiterpenes: pharmacology
650 _ 2 |2 MeSH
|a Hemiterpenes: secretion
650 _ 2 |2 MeSH
|a Hydroxyl Radical: analysis
650 _ 2 |2 MeSH
|a Hydroxyl Radical: metabolism
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Monoterpenes: metabolism
650 _ 2 |2 MeSH
|a Monoterpenes: pharmacology
650 _ 2 |2 MeSH
|a Oxidation-Reduction
650 _ 2 |2 MeSH
|a Pentanes: analysis
650 _ 2 |2 MeSH
|a Pentanes: pharmacology
650 _ 2 |2 MeSH
|a Picea: drug effects
650 _ 2 |2 MeSH
|a Picea: metabolism
650 _ 2 |2 MeSH
|a Seasons
650 _ 2 |2 MeSH
|a Temperature
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Trees: drug effects
650 _ 2 |2 MeSH
|a Trees: metabolism
650 _ 2 |2 MeSH
|a Volatile Organic Compounds: analysis
650 _ 2 |2 MeSH
|a Volatile Organic Compounds: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Aerosols
650 _ 7 |0 0
|2 NLM Chemicals
|a Butadienes
650 _ 7 |0 0
|2 NLM Chemicals
|a Hemiterpenes
650 _ 7 |0 0
|2 NLM Chemicals
|a Monoterpenes
650 _ 7 |0 0
|2 NLM Chemicals
|a Pentanes
650 _ 7 |0 0
|2 NLM Chemicals
|a Volatile Organic Compounds
650 _ 7 |0 3352-57-6
|2 NLM Chemicals
|a Hydroxyl Radical
650 _ 7 |0 7440-44-0
|2 NLM Chemicals
|a Carbon
650 _ 7 |0 78-79-5
|2 NLM Chemicals
|a isoprene
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB1780
|a Wildt, J.
|b 1
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB46017
|a Dal Maso, M.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB67355
|a Hohaus, T.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)129345
|a Kleist, E.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)16346
|a Mentel, T. F.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)5344
|a Tillmann, R.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB56253
|a Uerlings, R.
|b 7
|u FZJ
700 1 _ |0 P:(DE-Juel1)129402
|a Schurr, U.
|b 8
|u FZJ
700 1 _ |0 P:(DE-Juel1)16324
|a Wahner, A.
|b 9
|u FZJ
773 _ _ |0 PERI:(DE-600)1413423-8
|a 10.1038/nature08292
|g Vol. 461, p. 381 - 384
|p 381 - 384
|q 461<381 - 384
|t Nature
|v 461
|x 0028-0836
|y 2009
856 7 _ |u http://dx.doi.org/10.1038/nature08292
856 4 _ |u https://juser.fz-juelich.de/record/5759/files/FZJ-5759.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:5759
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK406
|a DE-HGF
|b Umwelt
|k P22
|l Atmosphäre und Klima
|v Atmosphäre und Klima
|x 0
|z fortgesetzt als P23
913 1 _ |0 G:(DE-Juel1)FUEK407
|a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 1
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 30.09.2010
|g ICG
|k ICG-2
|l Troposphäre
|0 I:(DE-Juel1)VDB791
|x 1
920 1 _ |d 31.10.2010
|g ICG
|k ICG-3
|l Phytosphäre
|0 I:(DE-Juel1)ICG-3-20090406
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)113584
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-8-20101013
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21