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Abstract

We have used equilibrium and non-equilibrium molecular dynamics simulations to study the

solute self diffusion coefficient and the shear rate dependence of the solution viscosity in solutions

of suspended particles that range in mass ratio from µ = 1 up to µ = 50 and size ratio from s = 1 up

to s = 4.03 at various concentrations. The zero shear rate viscosities and the initial rates of shear

thinning were determined from data in the shear rate region in which the suspension is strongly

shear thinning while the solvent remains Newtonian or is weakly shear thinning. The rate of shear

thinning increased dramatically with solute volume fraction, regardless of whether the increase was

due to increasing solute size, or increasing the solute concentration. In a series of simulations in

which the mass ratio was varied while keeping the size ratio fixed at s = 1, we found that the

approach of the viscosities and self diffusion coefficients to their limiting mass ratio independent

values was well described by a rather simple exponential dependence on mass ratio. The limiting

infinite mass ratio values of the self diffusion coefficients and zero shear rate viscosities were plotted

against solute volume fraction, and used to compute the hydrodynamic radius RH of the solute

particles by various methods. The values of RH that were obtained by the different methods were

reasonably consistent with each other, and indicated that the radius at which the slip boundary

condition holds is slightly smaller than the cross-interaction radius between the solute and solvent

particles.
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I. INTRODUCTION

The self-diffusion coefficient D for a single, rigid, spherical solute particle of mass m2

and radius a that are large compared to the mass and radius of the particles comprising the

infinite bath of equilibrium solvent of viscosity ηs in which it is dispersed, is given by the

Stokes-Einstein formula [1],

D =
kBT

ζ
=

kBT

CπηsRH
, (1)

where kB is Boltzmann’s constant, T is the temperature, ζ is the friction coefficient and C is

a numerical constant determined by the hydrodynamic boundary condition for the solvent

at the surface of the solute particle. The value of C is 6 for stick and 4 for perfect slip.

The Stokes-Einstein relation is expected to be valid when the solute undergoes diffusive

motion through a solvent that can be treated as a purely viscous hydrodynamic continuum.

These conditions are usually regarded as being satisfied in the Brownian limit, conventionally

defined as the limit where the solute to solvent mass ratio, µ = m2/m1 approaches infinity

[2]. Eq. (1) shows that under these conditions, the self diffusion coefficient is expected to

be independent of the mass of the solute particle.

Despite its origins in Brownian motion theory, the Stokes-Einstein equation is often used

to describe the relationship between the solute diffusion coefficient and size and the solvent

viscosity for solutions of molecules that are of a size and mass comparable to that of the

solvent, even extending to situations where the solute is just a tagged solvent molecule.

However, the interpretation of the boundary condition and the hydrodynamic radius of the

solute particle then become ambiguous. In an effort to clarify the circumstances under

which the Stokes-Einstein equation is satisfied, several studies have recently been conducted

to determine the way in which the limiting behaviour described by Eq. (1) is approached

when the solute particle size and mass are increased from values that are comparable to

those of the solvent [3–7].

Bhattacharyya and Bagchi [3] used a mode coupling theory to investigate the diffusion

coefficient of a solute particle in a solvent, where the size of the solute particle was comparable

to the size of the solvent particles. They found that the Stokes-Einstein relation with the slip

boundary condition is approached for size ratios of about 2-3, with only a weak dependence

on mass ratio.

Nuevo, Morales and Heyes [4] used molecular dynamics simulations to investigate the size
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and mass ratio dependence of the velocity autocorrelation function and diffusion coefficient

of the solute for size and mass ratios in the range 2-5 and 1-27 respectively. They found that

when the density of the solute particle was much less than the density of the solvent particles,

the velocity autocorrelation function oscillated strongly at short times. However, the mass

ratio dependence of the self diffusion coefficient was weak in comparison to the size ratio

dependence, in agreement with other studies. They used the Stokes-Einstein equation with

a stick boundary condition to analyse their results, but did not discuss the validity of this

boundary condition, or the value of the effective hydrodynamic radius, in detail. However, a

unique feature of their work was that they also considered the concentration dependence of

the solution viscosity and the solute self diffusion coefficient. They interpreted their diffusion

results in terms of a truncated power series expression for the concentration dependence of

the long-time self diffusion coefficient of a colloidal particle with stick boundary conditions,

D (φ)

D
= 1 − kD,1φ + · · · (2)

where D is the infinite dilution value of the solute self diffusion coefficient and φ is the

volume fraction of solute. The value of kD,1 is 2.10 for stick boundary conditions [8, 9]. To

interpret the concentration dependence of the viscosity, they used a similar equation for the

concentration dependence of the viscosity of a suspension,

η (φ)

ηs

= 1 + kη,1φ + · · · (3)

where ηs is the solvent viscosity and the value of kη,1 was assumed to be equal to the value

of 2.5 calculated by Einstein [10], again assuming stick boundary conditions. The agreement

between the simulation results and the theoretical expressions was only qualitative.

Ould-Kaddour and Levesque [5] used molecular dynamics computer simulations to inves-

tigate the validity of the Stokes-Einstein relation as the mass and size of the solute particles

were varied. They concluded that for solutions in which the size ratio between the solute

and solvent particle diameters is fixed at s = d2/d1 = 0.5, and the mass ratio is varied, the

Stokes-Einstein formula with a slip boundary condition becomes valid when the mass ratio,

µ, is greater than 40. For solutions of particles with mass ratio µ = 1 and varying size ratio,

they concluded that the Stokes-Einstein formula with slip boundary conditions is valid for

size ratios, s, greater than 4. Combining the data for all systems that were deemed to be

in the hydrodynamic limit, they obtained a value for the effective hydrodynamic radius of
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the solute of a = λσ∗

12, where λ = 1.1± 0.1 and σ∗

12 is the cross-radius of the Lennard-Jones

interaction between the solvent and solute particles.

Schmidt and Skinner [7] performed a series of very precise molecular dynamics simulations

using a model for the solute particles that was designed to maintain the density at the same

value as the average internal density of a solvent particle. In agreement with the results

of Ould-Kaddour and Levesque [5], they found that using a hydrodynamic radius equal to

the cross-radius of the Lennard-Jones interaction between the solute and solvent particles

gave results that converged to the Stokes-Einstein relation with a slip boundary condition

at sufficiently high values of the mass ratio (µ = 100).

In all of the above studies, the slip boundary condition seems most appropriate because

the interaction between the solvent and solute particles is an isotropic potential energy

function with no tangential component, and the attractive interaction between solute and

solvent particles was not strong enough to create a strongly adsorbed layer of solvent around

each solute particle. Despite initial indications to the contrary [11], there now appears to

be a consensus that the slip boundary condition is obtained in the Brownian limit for this

type of solute-solvent interaction. However, there is not yet complete agreement on the

way that the hydrodynamic radius should be calculated, especially for particles that are too

light or small to have reached the Brownian limit. It remains to be determined whether, by

a suitable choice of the hydrodynamic radius, the range of validity of the Stokes-Einstein

relation could be extended to lower mass or size ratios than the limiting values that have so

far been observed.

We have published the results of a preliminary investigation of the behaviour of the solute

and solvent velocity autocorrelation functions, memory functions, self diffusion coefficients

and suspension viscosities as a function of the mass ratio µ for particles with size ratio

s = 1 interacting via a truncated and shifted Lennard-Jones potential [6]. The viscosity of

a suspension is generally more important in industrial and technological applications than

the self diffusion coefficient of the solute, but apart from the investigation of Nuevo et al. [4]

and our previous study, there have been no detailed studies of changes in the viscosity of a

nanocolloidal suspension, as the Brownian limit is approached. Our results showed that the

memory function for the solute decayed rapidly in comparison to its velocity autocorrelation

function, at high mass ratio µ = 10 and low solute concentration. This was interpreted as a

signature of the approach to the Brownian limit. The shear rate dependence of the viscosity
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became more pronounced as the mass ratio was increased, so that for the highest mass

ratio µ = 50 studied, the solution viscosity was significantly shear thinning over a range of

shear rates for which the solvent was essentially Newtonian. The concentration dependence

of the solute self diffusion coefficient and the zero shear rate suspension viscosity were also

studied. When analysed in terms of the thermodynamic (rather than hydrodynamic) volume

fraction, values of kD,1 = 0.95 and kη,1 = 2.33 were found at mass ratios of µ = 10 and

µ = 20 respectively. These values did not represent asymptotic high mass ratio limits,

and no detailed discussion of the of hydrodynamic radius, the boundary condition or the

hydrodynamic volume fraction was given.

In this paper, we extend our results for the disparate mass, s = 1 systems, including

higher mass ratio (µ = 50) and concentration (x2 = 0.5) data. We determine the infinite

mass ratio limiting behaviour for solute particles with s = 1 by extrapolation. We also

present results for disparate-size systems in which the volume fraction is varied by changing

the concentration at fixed mass and size ratio in the first set of data, and then by changing

the size and mass ratios at fixed number fraction in the second set. We use our data for

the concentration dependence of the viscosity to obtain an independent measure of the

hydrodynamic radius that is then compared with that obtained from the Stokes-Einstein

equation assuming a slip boundary condition.

II. SIMULATION DETAILS

We consider two types of system. In the first, disparate-mass system, the mass ratio, µ,

between the solute and solvent particles is increased while keeping the particle sizes equal.

In the second, disparate-size system, the solute particle size is also increased in such a way

that the internal density of the solute particle approaches the average density of the solvent

continuum, using a scheme that is similar to that used by Schmidt and Skinner [7]. This

system is intended to more closely resemble experimental colloids where the particles are

density matched to the solvent so that the effect of gravity and associated sedimentation

problems are avoided.

The particles interact via a truncated and shifted Lennard-Jones potential which is mod-

ified to include a hard core [12]. A similar potential was used by Nuevo et al. [4] and by
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Schmidt and Skinner [7]. The interaction potential (in reduced units) is

φab(r) = 4
[

(r − cab)
−12 − (r − cab)

−6
]

+ 1 (4)

if cab < r < cab + 21/6, where cab is the core diameter of the interaction between particles of

species a and b = (1, 2). For separations r > cab + 21/6, the potential is zero. The solvent

(species 1) particles are taken to have no core c11 = 0 and unit mass m1 = 1. The solute

particles (species 2) have core radius c22 related to the size ratio and mass m2 = µ, where µ

is the mass ratio between the solute and solvent particles. The value of the cross-interaction

core radius is c12 = 1
2
c22. We have chosen a truncation point of r = 21/6, corresponding to

the minimum of the potential, which results in a hard, purely repulsive interaction (Weeks,

Chandler and Andersen (WCA) [13].

To minimize the number of parameters in the model system and to best remove the influ-

ence of the nature of the interaction between the particles, all of the interaction parameters

except for the core radius are taken to be the same regardless of the species of the particles.

To study the size ratio between the species, an equivalent hard sphere diameter of the

particles must be approximated. Hess, et al. [14] suggest a number of methods to approx-

imate the size of the particles in a one-component equilibrium WCA fluid. The simplest

method they outline is also the one which gives the best results in their study of the compar-

ison between a modified Carnahan-Starling relation and results obtained from simulations.

In that method the diameter of the particles is that value of r for which φ(r) = kBT . We

here take the reduced temperature of the system to be kBT = 1 in which case the solvent

particles have diameter d1 ≈ 1 and the solute particles d2 ≈ 1 + c22.

The systems are simulated using the homogeneous SLLOD equations of motion which

induces a linear velocity profile in the fluid. The temperature and pressure of the system are

controlled via a Gaussian isokinetic thermostat [15] and a modified Nosé-Hoover barostat
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devised by Melchionna, Ciccotti and Holian [16]. The full equations of motion are

ṙi =
pi

mi
+ iγ̇yi − ζ(ri −R)

ṗi = Fi − iγ̇pyi − (α + ζ)pi

α =
1

2K0

∑

i

[

pi

mi

· Fi − γ̇
pxipyi

mi

]

− ζ

ζ̇ =
1

Qp

(

p

p0

− 1

)

V̇ = 3ζV

(5)

where ri, pi and mi are the position, peculiar (non-streaming) momentum and mass of

the i-th particle, γ̇ is the strain rate, R is the position of the centre of mass, p0 is the

desired pressure, α is the thermostat multiplier, K0 is the total kinetic energy, ζ is the

barostat multiplier, Qp is a parameter associated with the strength of the barostat and V

is the system volume. Note that the expression for the thermostat multiplier differs from

the usual Gaussian isokinetic thermostat to include the effect of the barostat. To maintain

the velocity profile the SLLOD equations of motion should be used in conjunction with

compatible periodic boundary conditions such as those of Lees and Edwards [17].

The instantaneous pressure is given by p = 1
3
Tr{P} where P is the pressure tensor. The

microscopic expression for the pressure tensor in a homogeneous system with only pairwise

additive interactions, is [15]

PV =

〈

∑

i

pipi

mi
−

1

2

∑

i,j

rijFij

〉

, (6)

where rij = rj − ri is the minimum-image pair separation vector and Fij is the pair force

between particles i and j. In systems of particles with no internal degrees of freedom

interacting via a central force the instantaneous pressure tensor is symmetric.

The shear rate dependent viscosity of the suspension can be calculated by

η(γ̇) = −
Pxy

γ̇
, (7)

where Pxy is the xy component of the pressure tensor, which is always symmetric for the

simulations reported here.

Recently there has been much work on a new class of integrators [18–22]. These so-called

symplectic integrators are stable over a large range of time step (∆t) values. The well known
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velocity-Verlet integrator [23, 24] is an example of an equilibrium symplectic integrator but

is only applicable to Newtonian equations of motion.

Zhang et al. [25, 26] have developed symplectic integrators for two sets of equations

of motion which include the Gaussian thermostat. The first integrator was developed for

the undriven, equilibrium equations of motion with the Gaussian isokinetic thermostat [25].

The second integrator is an extension of this to include the shear rate dependent terms of

the SLLOD equations of motion including the shear rate dependent thermostat multiplier

[26][Appendix B]. We have extended this series of integrators to include the barostat terms,

details of which may be found in the appendix.

The Zhang series of integrators possess superior stability and exhibit much less drift

than the 4th order Gear integrator [27], when applied to these equations of motion. They

do however have a higher degree of error of O(∆t3). These errors do not accumulate in

any particular direction in the conserved quantities so that the energy or the temperature

remain constant or fluctuate around a central value. Zhang et al. [26] have also shown that

numerical errors in the pressure and other non-conserved properties are less for the Zhang

series of integrators than for the Gear integrator.

III. VISCOSITY OF A DISPARATE-MASS BINARY FLUID

The first series of investigations considers a model suspension where the mass of the

solute particles is varied while keeping the size ratio constant at s = 1. The core diameter of

the solute particles is set to zero, so that the only difference between the solute and solvent

particles is their respective masses. This is an interesting system from a theoretical point

of view since the Brownian limit has often been taken to mean that the mass ratio between

the solute and solvent particles goes to infinity, µ → ∞ [28], without referring to the size

ratio.

Two sets of simulations were performed to test the mass ratio dependence of the viscosity

of this model system. The simulations were carried out at a constant reduced temperature

of T = 1.0 and number density of n = 0.85, with the total number of particles being set to

N = 2048.

The first set of simulations had mass ratios µ = {1 − 10, 20, 30, 40, 50} at a constant

number of solute particles N2 = 80 and total number of particles N = 2048, giving a
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number fraction of x2 = N2/N = 80/2048 ≈ 0.04 for the number fraction of solute particles.

(Generally only results for the mass ratios µ = {1, 2, 5, 10, 20, 50} are shown for clarity.)

The shear rate was varied in steps of 0.04 up to 0.2, after which it was varied in steps of 0.2

up to 1.6. The number of time steps used was 20, 000 for the zero shear rate run; 120, 000

for the γ̇ = 0.04 and 0.08 runs; 80, 000 for the γ̇ = 0.12 and 0.16 runs; and 40, 000 for the

higher shear rate runs. Half of the time steps were for equilibration and the other half were

for production of results.

The second set of simulations had mass ratios µ = {1, 2, 5, 10, 20} and number fractions

x2 = {0.04, 0.1, 0.2, 0.5}, corresponding to solute numbers N2 = {80, 205, 410, 1024}, again

keeping the total number of particles fixed at N = 2048. The shear rate was varied in steps

of 0.04 up to 0.2. The number of time steps used in this set of simulations was the same as

those used in the first set of simulations.

The viscosity computed from the first set of disparate-mass simulations is shown in Fig.

1. The viscosity shows typical shear thinning but also an interesting phenomenon where the

viscosities tend to become equal regardless of mass ratio at high shear rates. The degree

of shear thinning is increased in the solutions with higher mass ratios, and the onset of

shear thinning occurs at a much lower shear rate for the µ = 50 solution than for the pure

solvent (µ = 1). This trend is also observed in the solutions with lower mass ratio, but is

less pronounced. By symmetry arguments it can be shown that if a power series expansion

of the shear rate dependence of the viscosity exists, then to leading order in γ̇, the viscosity

goes as the square of the shear rate,

η(γ̇) = η0 − η2γ̇
2 (8)

where η0 is the zero shear rate viscosity and η2 is the second order coefficient in the expan-

sion. There has been much debate about the expected functional form of the viscosity at

low shear rates [29–33] and the argument is far from resolved, however we found that the

parabolic functional form described our data well, and we used it as a convenient method for

extrapolating to the zero shear rate viscosity and quantifying the degree of shear thinning

at low shear rates. Only results for shear rates lower than the onset of power law shear

thinning were included in the fits (i.e. for γ̇ ≤ 0.2). At the highest values of mass ratio

and concentration, the maximum shear rate included in the fits was reduced further if the

quadratic fit failed to describe the data well. The results of this analysis may be seen in
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FIG. 1: Viscosity versus shear rate for different values of the mass ratio at fixed solute concentration

x2 ≈ 0.04 and fixed size ratio (s = 1). Error bars are approximately the same size as the plot

symbols at low shear rates and smaller than the plot symbols at high shear rates and are omitted

for clarity.

Table I. As expected, the viscosity of the suspension increases with increasing mass ratio

and concentration. The first row of data (µ = 1) demonstrates the reproducibility of our

results. For this value of µ, the solvent and solute are identical, so each number fraction

represents a system of 100% solvent. The values of η0 in this row are all within uncertainties

of each other, and the same is true for the values of η2. The zero shear rate viscosity of

the pure solvent is obtained by averaging these values, giving ηs = 2.261 ± 0.004, and the

average value of η2 is equal to 1.1 ± 0.1.

Due to the scaling units used the viscosity of the pure solute fluid (x2 = 1) is related

to the viscosity of the pure solvent by ηsolute
0 = µ1/2 ηsolvent

0 . The state point of the solute

fluid is the same as that of the solvent fluid, that is the temperature and pressure remain

constant under this scaling.

We expect the value of the zero shear rate viscosity to become mass-independent as

the mass ratio is increased at a given solute number fraction, similar to the self diffusion

coefficient. Therefore, it should be possible to fit a function with an asymptote to the data

to obtain a value of the limiting infinite-mass-ratio suspension viscosity at each value of the
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TABLE I: Mass-ratio dependence of the zero shear rate viscosity, η0, and initial rate of shear

thinning, η2, for disparate-mass (equal size) suspensions, for various number fractions x2.

x2 = 0.04 x2 = 0.10 x2 = 0.20 x2 = 0.50

µ η0 η2 η0 η2 η0 η2 η0 η2

1 2.265(5) 1.2(2) 2.257(6) 1.0(2) 2.262(5) 1.1(2) 2.26(6) 1.1(2)

2 2.290(5) 1.1(2) 2.346(6) 1.3(2) 2.435(6) 1.7(2) 2.716(7) 2.5(2)

5 2.333(5) 1.1(2) 2.470(6) 1.5(2) 2.715(5) 2.8(2) 3.495(7) 4.3(3)

10 2.375(6) 1.4(2) 2.580(5) 2.2(2) 2.950(5) 3.3(2) 4.38(1) 12.8(9)

20 2.424(5) 1.9(2) 2.699(8) 3.3(4) 3.247(5) 5.3(2) 5.48(1) 23(1)

30 2.444(6) 2.1(2)

40 2.468(5) 2.2(2)

50 2.473(5) 2.1(2)

number fraction. We found that our results were well described by the following function,

η0 = ηs + (η∞ − ηs)
(

1 − e−a(µ−1)
)

(9)

where η∞ is the limiting value of the viscosity at infinite mass ratio and ηs is the solvent

(µ = 1) viscosity. This function has the desired behaviour - at a mass ratio of µ = 1, we have

η0 = ηs, and at infinite mass ratio, the suspension viscosity approaches a constant value,

η∞ - but we know of no theoretical justification for this functional form for the mass ratio

dependence.

The results of non-linear least squares fits to Eq. 9 are shown in normalized form in

Figure 2. A surprising result is that the rate of approach to mass-independence varies non-

monotonically with concentration. The value of a is smallest for number fraction x2 =

0.04, then it increases significantly at x2 = 0.10, after which it begins to decrease again.

Encouraged by the success of this relatively simple description, we have reanalysed our data

for the mass ratio dependence of self diffusion coefficients reported in our earlier work [6],

using the functional form
D − D∞

D0 − D∞

= e−b(µ−1) (10)

The results shown in Fig. 3 indicate that Eq. 10 describes the data surprisingly well, and

once again we observe the surprising result that the approach of the self diffusion coefficient
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FIG. 2: Approach of the viscosity to a mass-ratio independent value for different values of the

solute concentration.

to mass-independence occurs most slowly for the lowest concentration system. Values of the

FIG. 3: Approach of the solute self diffusion coefficient to a mass-ratio independent value for

different values of the solute concentration.

limiting infinite mass ratio viscosities and self diffusion coefficients, along with the rates of

approach to mass ratio independence, are shown in Table II.

The concentration dependence of the self diffusion coefficient is very well fitted by a
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TABLE II: Limiting infinite mass ratio values of the solution viscosity and solute self diffusion

coefficient and their rate of approach to the limit (see Eq. 9 and Eq. 10), for various number

fractions x2.

x2 η∞ a D∞ b

0.04 2.471(4) 0.093(6) 0.052(2) 0.20(6)

0.1 2.72(3) 0.15(2) 0.0501(7) 0.31(4)

0.2 3.32(7) 0.13(2) 0.0435(7) 0.31(3)

0.3 0.0381(5) 0.31(2)

0.4 0.034(1) 0.33(3)

0.5 6.1(2) 0.09(1) 0.0287(8) 0.35(2)

quadratic function that gives a value for D at infinite dilution and infinite mass ratio of

D∞(φ = 0) = 0.056 ± 0.001. This result can be used, with the solvent viscosity found

previously (ηs = 2.261± 0.004) to obtain a value of RH = 0.63± 0.01 for the hydrodynamic

radius, assuming that the slip boundary condition applies. The cross radius, suggested by

Ould-Kaddour and Levesque [5] as a possible candidate for the hydrodynamic radius, is only

0.5, which is significantly less than this value.

We now consider the concentration dependence of the viscosity. The solution viscosity is

plotted against the thermodynamic volume fraction of solute for different values of the mass

ratio in Fig. 4. The concentration dependence of the limiting infinite mass ratio viscosity

from Table II is also shown. The short dashed line is the expression for the viscosity of

a suspension of colloidal hard spheres including hydrodynamic interactions with the stick

boundary condition, given by Wajnryb and Dahler [34],

η

ηs
= 1 + 2.5φ + 5.9147φ2 (11)

and the long dashed line is their expression for slip boundary conditions,

η

ηs
= 1 + φ + 1.8954φ2. (12)

At low concentrations, the concentration dependence of the viscosity for infinite mass

ratio might be expected to resemble the results for a colloidal suspension, as described

by the Einstein relation, Eq. (3) with kη,1 = 2.5. This equation predicts that the viscosity
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FIG. 4: Relative zero shear rate viscosity versus thermodynamic volume fraction for different solute

to solvent particle mass ratios, keeping the size ratio constant at s = 1. The mass ratios are µ = 1

(unfilled circles), µ = 2 (squares), µ = 5 (diamonds), µ = 10 (crosses) and µ = 20 (plus signs), and

µ = ∞ (filled circles). The solid line is a quadratic fit to the µ = ∞ data and the short and long

dashed lines are the theoretical curves for stick and slip boundary conditions respectively.

should be simply related to the viscosity of the solvent and the hydrodynamic volume fraction

occupied by the solute particles, independent of the solute to solvent particle mass ratio.

The Einstein expression is derived from a hydrodynamic calculation of the flow around a

massive solute particle suspended in a fluid, and thus will become valid in the hydrodynamic

limit. This limit is reached when the solvent particles act not as a collection of microscopic

particles, but as a continuous fluid, and in this sense could also be called the continuum

limit. The conditions for this limit will be satisfied when the time scale associated with

the motion of the solute particles becomes much longer than the time scale associated with

the relaxation of the solvent fluid. An appropriate time scale for the solute particles can

be defined by the average time taken to move one particle diameter. If the solute particles

are in thermal equilibrium with the solvent, this time will increase as the square root of the

mass ratio, τ ∝ µ1/2. In the Brownian limit, µ → ∞, this time scale will also go to infinity

τ → ∞. Therefore a sufficient condition for the approach to the hydrodynamic limit is that

the Brownian limit is approached.

The results of fitting the Einstein equation to the low number fraction zero shear rate
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viscosities, up to and including x2 = 0.20, were presented in a previous publication [6].

The results showed that the concentration dependence described by the Einstein formula

is approached, but not reached, as the mass ratio is increased to µ = 20. A similar result

was found by Nuevo et al. [4]. It is now clear that there are reasons for expecting that

the Einstein equation will not describe the limiting behaviour of this system. We have

already seen that the slip boundary condition seems to be most appropriate for the systems

that we are simulating, whereas the Einstein equation assumes a stick boundary condition.

It is also known [35, 36] that the Einstein relation is only expected to be valid for very

dilute suspensions, φ . 0.10. Therefore, in this paper, we have interpreted our results using

Wajnryb and Dahler’s extension of Einstein’s formula to second order in volume fraction with

stick boundary conditions (Eq. 11) and their expression for the concentration dependence of

the viscosity to second order in volume fraction, assuming slip boundary conditions (Eq. 12).

The coefficient of the first order term of Eq. 11 is Einstein’s result 2.5, and the coefficient

of the second order term, 5.9147 is an improved value of the one originally calculated by

Batchelor [37] as 6.2. Eq. 12 [34] appears to be the only result published for the slip

boundary condition.

In order to accurately compare our results with theoretical predictions which give the

concentration in terms of volume fraction, we must find an appropriate way to calculate

the hydrodynamic volume fraction. It is helpful here to clearly distinguish between the

hydrodynamic and thermodynamic volume fractions. The hydrodynamic volume fraction is

the volume fraction calculated from the hydrodynamic radius, which may differ from the

bare or ”dry” volume of the particles. Calculation of the hydrodynamic volume fraction

becomes ambiguous for very small solute particles, because it requires knowledge of the

radius of the surface around the solute particle at which the hydrodynamic slip or stick

boundary condition is satisfied by the solvent. For a very small particle, the hydrodynamic

radius may differ by a significant fraction from the bare radius of the solute particle. On

the other hand, the thermodynamic volume fraction is well defined, regardless of the sizes

of the components of a solution. It is defined as

φ =
Vsolute

V
=

N2v2

V
= nx2v2, (13)

where v2 is the partial molecular volume of solute particles,

v2 =

(

∂V

∂N2

)

N1

, (14)
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n = (N1 + N2)/V is the total number density of the suspension, and x2 is the number

fraction of solute particles. The total volume of the system is given by

V = N1v1 + N2v2. (15)

Particles with identical interactions and sizes will have identical molar volumes, regardless

of their mass, in an equilibrium solution. Using this fact, we find that v2 = 1/n where n is

the total number density. Eq. 13 then shows that that for this series of simulations, in which

the mass ratio is varied at constant size ratio s = 1, the thermodynamic volume fraction φ of

the solute particles is equal to the number fraction, x2. Calculation of the effective particle

diameter from the thermodynamic volume fraction, assuming that all particles are identical

spheres occupying one molar volume each, gives d = 1.31. This can be used to obtain a value

of the hydrodynamic radius of RH = 0.655, which agrees reasonably well with the value of

0.63 found earlier from the limiting infinite mass-ratio self diffusion coefficient and the Stokes-

Einstein relation. The partial molecular volume is an equilibrium thermodynamic property,

which will be independent of the mass of the solvent particle, but the hydrodynamic radius

obtained from the self diffusion coefficient and the Stokes-Einstein relation is a dynamic

property that will depend on the mass ratio. Therefore, the comparison must be made

cautiously, but the thermodynamic volume fraction is nevertheless a convenient measure of

concentration for the comparison in Fig. 4.

A quadratic fit to the infinite mass ratio viscosity versus thermodynamic volume fraction

data shown in Fig. 4 gives the result η/ηs = 1 + 1.2(3)φ + 4.0(9)φ2. This is significantly

different from the expected result for the slip boundary condition, Eq. (??)q:eta-slip. The

discrepancy could be due to an inadequate estimate of the hydrodynamic radius, or an

incorrect assumption regarding the hydrodynamic boundary condition.

If the hydrodynamic radius is instead calculated from the bare radius, the volume fraction

calculated for the highest concentration (x2 = 0.5) is φ = 0.22. This would place the highest

concentration points for µ = ∞ and µ = 20 both well above the theoretical curve for the stick

boundary condition. Clearly, the stick boundary condition does not apply. However, when

the volume fraction is calculated from the thermodynamic volume per particle, the highest

concentration point at φ = 0.50, as shown in Fig. 4, falls above the theoretical curve for the

slip boundary condition. If it is assumed that the slip boundary condition applies, and the

volume fraction is calculated using a hydrodynamic radius that has been adjusted to force
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agreement with the theroretical curve, a hydrodynamic radius of RH = 0.73 is found. This

value is larger than the Stokes-Einstein radius 0.63 ± 0.01 and the thermodynamic radius

0.655 but smaller than the interaction cross-radius 1.0. The agreement between the values

of hydrodynamic radius calculated from the concentration dependence of the viscosity, the

Stokes-Einstein equation and the thermodynamic volume per particle is fair.

IV. VISCOSITY OF A DISPARATE-SIZE BINARY FLUID

In experimental studies of colloidal systems, the solute particles generally have constant

density that is independent of the size of the particle. If this density is equal to the bulk

solvent density then the effects of gravity can be ignored and the colloidal particle motion

is then due solely to Brownian motion, hydrodynamic drag and interactions with other

solute particles. We wish to study a system that approaches this behaviour as the size ratio

between the solute and solvent particles is increased.

In our simulations of solutions of disparate-sized particles, we have changed the particle

size by increasing the core of the solute particles in the potential energy function, Eq. (4).

The density of the solute particles is chosen to fulfil two limiting requirements. The first is

that at a size ratio of s = d2/d1 = 1 the mass of a solute particle equals the mass of a solvent

particle, so that in the equal size limit the particles are identical. The second is that in the

limit as the size ratio between the species goes to infinity (s → ∞) the mass of the solute

particle is such that it has an internal mass density as close as possible to the fluid density

surrounding it. A convenient method of achieving this is to take the density of the solute

particle core (see Eq. (4)), of radius 1
2

c22, to be equal to the fluid density and the density

of the shell, of thickness 1
2
, to be equal to the internal density of a solvent particle. Figure

5 shows the approximate size ratio obtained using this scheme. Note that in calculating the

core radius for specific mass ratios, the bulk number density of the solvent is taken as the

zero shear rate, pure solvent (γ̇ = 0, x2 = 0) number density. This is an approximation

which is good at low volume fraction but becomes progressively worse as the solute volume

fraction is increased. For the volume fractions studied here this approximation is adequate.

The internal density of the solvent particles, which have mass m1 = 1 and diameter

d1 = 1, is 6/π, and the density of the pure solvent at constant pressure is the equilibrium
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FIG. 5: Approximate size ratio s between solute and solvent particles. Squares represent the

composite core-shell solute particles. The solid line is the size ratio of solute particles with an

internal density equal to the solvent particles and the dashed line that of neutrally buoyant solute

particles.

number density n0. The mass of the core of the solute particles is

mcore =
π

6
c3
22n0, (16)

and the mass of the shell is

mshell = (c22 + 1)3 − c3
22. (17)

It is important to be able to characterize the solute particles primarily by size. This requires

that the sum of equations (16) and (17) be solved to give the core diameter c22 as a function of

solute mass. For a pure solvent number density of n0 = 0.85 the core diameters corresponding

to the set of mass ratios investigated may be seen in Table III.

Two sets of simulations were performed to study the effect of solute size on the viscosity of

a model suspension. The simulations were performed at a constant temperature of T = 1.0

and pressure of p = 9.04, which corresponds to a pure solvent fluid number density of

n0 = 0.873. As in our previous set of simulations, the total number of particles was set to

N = 2048.

The simulations of the disparate-size mixtures were performed at constant solution pres-

sure to ensure that the results would be comparable to our s = 1 results in the previous
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TABLE III: Core diameters c22, and corresponding size ratios s, used in the disparate-size mixture

simulation, for various solute to solvent mass ratios µ.

µ c22 s

1 0 1

2 0.262 1.262

5 0.735 1.735

10 1.225 2.225

20 1.869 2.869

50 3.030 4.030

section. For equal sized particles, the thermodynamic properties of the solution remain con-

stant as the solute to solvent particle mass ratio and the concentration are increased. In the

current set, the thermodynamic properties must change when the particle size ratio or the

concentration are changed. The most convenient way of maintaining comparable conditions

for the two sets of simulations is to keep the solution pressure constant.

The first set of simulations was used to study the size ratio dependence of the suspension

viscosity. The simulations had mass ratios µ = {1, 2, 5, 10, 20, 50} and a constant molar

concentration of solute particles of x2 ≈ 0.005 corresponding to N2 = 10. The volume

fraction of the solute particles increases as the mass ratio increases, so the number fraction

was chosen to allow the study of reasonably large size ratios, corresponding to large volume

concentrations. The shear rates used were γ̇ = {0, 0.02, 0.1, 0.2, 0.3}, with a time step of

either ∆t = 0.01 or 0.005 and a total number of time steps of 100, 000 for equilibration and

a further 100, 000 for production of results. The µ = 10 and 50 simulations were extended

to shear rates of γ̇ = 1.0 in steps of 0.1.

The second set of simulations was used to study the concentration dependence of the

suspension viscosity at a fixed value of the size (and mass) ratio. The mass ratio was set at

µ = 10, corresponding to a size ratio of s = 2.225, and the number fraction was taken to be

x2 = {0.001, 0.005, 0.01, 0.02, 0.04}. The shear rates, time step and numbers of time steps

were the same as those used in the first set of simulations. The x2 = 0.005 and 0.01 sets

were extended to γ̇ = 1.0 in steps of 0.1.

The shear rate dependence of the viscosity for the x2 = 0.005 and µ = 10 suspensions at
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low shear rates are shown in Figures 6 and 7. Both Figures show similar behaviour. The

viscosity at low shear rates depends strongly on the number fraction and size ratio. The

viscosity decreases with increasing shear rate. The suspensions with larger number fraction

or larger size ratio, both of which correspond to larger volume fractions, show a greater

degree of shear thinning, and this shear thinning is seen to occur at lower shear rates. For

the x2 = 0.005, µ = 50 suspension the Newtonian region is never reached. At large shear

rates the suspension viscosities do not approach a common limiting value, unlike the s = 1

simulations, see Figure 1. Heyes [38] has observed strong shear thinning of hard sphere

FIG. 6: Viscosity versus shear rate for the x2 = 0.005 disparate-size suspension, for various mass

(and size) ratios. The different symbols correspond to mass ratios of: 1 (unfilled circles), 2 (unfilled

squares), 5 (unfilled diamonds), 10 (filled circles), 20 (filled squares), 50 (filled diamonds).

suspensions modelled by a Brownian dynamics simulation algorithm1 which does not include

the solvent explicitly and does not give any dependence on mass ratio. Heyes found that

the degree of shear thinning increased with increasing solute volume fraction, as is observed

in this work.

The shear thinning behaviour of these suspensions is much more pronounced than that

1 The particular Brownian dynamics algorithm used by Heyes includes the random Brownian force, the

hydrodynamic drag force and the direct solute-solute interaction forces. It does not include the solvent

mediated many-body hydrodynamic interactions between the solute particles.
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FIG. 7: Shear rate dependent viscosity of the µ = 10 (s ≈ 2.225) disparate-size suspension, for

various solute number fractions, x2 = 0.0 (unfilled circles), 0.001 (unfilled squares), 0.005 (unfilled

diamonds), 0.010 (filled circles), 0.020 (filled squares), 0.040 (filled diamonds).

TABLE IV: Variation of the fit coefficients in Eq. 18 with mass and size ratio at constant solute

number fraction, x2 = 0.005.

µ s η0 η2 η4

1 1 2.63(2) 3.4(7) 13(6)

2 1.262 2.63(2) 2.7(8) 7(7)

5 1.735 2.62(1) 4.8(5) 35(5)

10 2.225 2.79(2) 4(1) 14(8)

20 2.869 2.99(3) 6.6(10) 32(11)

50 4.03 3.60(7) 12(3) 63(20)

of the equal size suspensions described in the previous section. To obtain the zero shear

rate viscosities and a quantitative measure of the initial rate of shear thinning, we fitted a

second order polynomial function to the viscosity versus squared shear rate data, given by

η(γ̇) = η0 − η2γ̇
2 + η4γ̇

4 (18)

The results of these fits are shown in Table IV and Table V.

We again used the thermodynamic volume fraction as our measure of concentration for
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TABLE V: Variation of the fit coefficients in Eq. 18 with solute number fraction, x2 at constant

mass ratio µ = 10 and size ratio s = 2.225.

x2 η0 η2 η4

0 2.62(3) 3.4(13) 12(11)

0.000976563 2.64(2) 2.9(9) 8(8)

0.004882813 2.79(2) 4.0(10) 14(8)

0.009765625 2.95(4) 4.8(15) 17(13)

0.01953125 3.36(4) 9.2(15) 42(13)

0.0390625 4.27(3) 21.6(12) 120(10)

the disparate-size suspensions. In constant pressure simulations at low solute concentration,

it is a very good approximation to assume that the partial molecular volume of the solvent

remains constant regardless of solute concentration. Then, if n0 denotes the number density

in the pure solvent, the partial volume of the solute particles in a suspension at the same

pressure will be given by

v2 =
1

nx2

{

1 −
n

n0
(1 − x2)

}

, (19)

so that the volume fraction of the solute particles will be given by

φ = 1 −
n

n0

(1 − x2). (20)

The partial volume of the solute particles in the first set of simulations, in which the solute

number fraction remains fixed at x2 ≈ 0.005, was calculated using equations Eq. 14 and

Eq. 19. The first expression was evaluated by performing simulations at the state points

(N = 2047, N2 = 9) and (N = 2049, N2 = 11), with T = 1.0, p = 9.04 and γ̇ = 0, and

approximating v2 by

v2(N = 2048, N2 = 10) =

(

∂V

∂N2

)

N1

≈
1

2

[

V(N=2049,N2=11) − V(N=2047,N2=9)

]

. (21)

The partial volumes from this calculation and those calculated from Equation (19) are

compared in Table VI against the bare volume of a solute particle, πs3/6, which is expected

to become a good approximation to the partial volume for large values of s. It can be seen

that the thermodynamic partial volume is very well approximated by assuming that partial

volume of the solute particles remains constant. The thermodynamic volume fractions for
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TABLE VI: Partial volumes v2 disparate-size mixture, with solute number fraction x2 ≈ 0.005, for

various mass ratios. Columns 4 and 5 are calculated using Equations (21) and (19), while the last

column is the bare volume of a single spherical solute particle.

µ s n v2

1 1 0.873 1.145 1.145 0.524

2 1.262 0.870 1.983 1.955 1.052

5 1.735 0.862 4.226 4.273 2.735

10 2.225 0.848 8.140 8.117 5.768

20 2.869 0.821 16.013 16.140 12.365

50 4.030 0.745 41.240 41.326 34.270

TABLE VII: Solute volume fractions in the disparate-size mixtures calculated from Eq. (19) for

the x2 = 0.005 constant solute number fraction disparate-size mixtures at various mass ratios (first

3 columns) and for the µ = 10 constant mass ratio (s ≈ 2.225) mixtures at various number fractions

(last 3 columns).

Const. x2 = 0.005 Const. µ = 10

µ n φ x2 n φ

1 0.873 0 0 0.873 0

2 0.870 0.008 0.001 0.868 0.007

5 0.862 0.018 0.005 0.848 0.033

10 0.848 0.033 0.01 0.824 0.066

20 0.821 0.064 0.02 0.780 0.124

50 0.746 0.150 0.04 0.705 0.225

the disparate-size solutions calculated using the partial molecular volumes given in column

5 of Table VI are shown in Table VII.

The zero shear rate viscosities from both sets of simulations are plotted against thermo-

dynamic volume fraction in Fig. 8. The difference between altering the volume fraction by

changing the concentration or the size of the solute particle is apparently small for these

solutions. A quadratic fit to the viscosity versus thermodynamic volume fraction results for
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FIG. 8: Zero shear rate viscosities of the disparate-size mixtures plotted against the thermodynamic

volume fraction. The unfilled circles are the results for the x2 = 0.005 constant solute number

fraction disparate-size mixtures and the squares are results for the µ = 10 constant mass ratio

disparate-size mixtures. For comparison, the limiting infinite mass ratio viscosities from Fig. 4 are

also shown (filled circles).

the constant µ = 10 data gives η/ηs = 1 + 1.6(2)φ + 5.4(8)φ2 (shown as a dot-dash line

in Fig. 8. The constant x2 = 0.005 data covered a smaller range of volume fractions, and

were better fitted by a straight line, with the result η/ηs = 1 + 1.2(3)φ. The fact that the

disparate-size data and the extrapolated infinite mass ratio, s = 1 data do not fall on a com-

mon curve when plotted against thermodynamic volume fraction indicates again that the

thermodynamic volume fraction does not quite match the hydrodynamic volume fraction.

The radius of the µ = 10, s = 2.225 spheres calculated from the partial molecular volume

is r = 1.25, which can be compared with the interaction cross-radius of 1.61 and the bare

radius 1.11. For a mass ratio of µ = 50, we find that the radius from the partial molecular

volume is 2.14, the interaction cross-radius is 2.52 and the bare radius is 2.02.

Using the same procedure as for the s = 1 systems studied in the previous section, we can

adjust the hydrodynamic radius to force the data to fit the theoretical curve for the viscosity

of a hard sphere suspension with the slip boundary condition [34]. The results, shown in

Fig. 9, show that a very good fit to the theoretical curve can be obtained by this procedure.

The hydrodynamic radius used to calculate the volume fraction for this forced fit was given
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by RH = (c22 +1+ δ)/2 where the value of δ was adjusted to obtain an adequate fit. For the

constant µ = 1, s = 2.225 series of data, a value of δ = 0.7 was required, giving RH = 1.46.

For the constant x2 = 0.005 series, we found δ = 0.2. For the µ = 50 mass ratio, this gives

a hydrodynamic radius of RH = 2.11.

FIG. 9: Relative zero shear rate viscosity plotted against hydrodynamic volume fraction calculated

with an adjustable parameter. The filled circles are the extrapolated infinite mass ratio, s = 1

data, the unfilled circles are the results for the mixtures with constant number fraction x2 = 0.005

and variable size and mass ratio, the squares for the constant mass ratio µ = 10, and size ratio

s = 2.225 mixtures with variable concentration. The short dashed line represents the theoretical

result for a system of hydrodynamically interacting hard spheres with slip boundary condition and

the long dashed line is the result for the stick boundary condition.

A summary of the results that we have obtained for the difference between the hydro-

dynamic radius and the bare particle radius of solute particles suspended in an explicitly

simulated solvent is given in Table VIII.

V. CONCLUSIONS

Our simulations have shown that the viscosity of a suspension of small solute particles be-

comes strongly shear thinning when the solute to solvent mass ratio or size ratio is increased.

Increasing the volume fraction of solute dramatically increases the rate of shear thinning
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TABLE VIII: Values of the difference between the hydrodynamic radius and the bare sphere radius,

δ = RH − s/2, calculated by various methods.

µ s δ(cross-radius) δ(η(φ)) δ (Stokes-Einstein)

∞ 1 0.5 0.23 0.13

10 2.225 0.5 0.35

50 4.03 0.5 0.1

when the mass or size ratio is greater than one. For a series of systems in which the mass

ratio is increased at constant size rate s = 1, the zero shear rate viscosity approaches mass

ratio independence at a rate that depends on the concentration. The rate of approach to

mass independence surprisingly varies non-monotonically with concentration, unlike the rate

of approach to mass independence of the self diffusion coefficient. The most rapid approach

to mass ratio independence for the solution viscosity occurs at a solute number fraction of

x2 = 0.1. The asymptotic infinite mass ratio self diffusion coefficient extrapolated to zero

concentration and the solvent viscosity can be used to obtain the hydrodynamic radius of

the solute particles in the infinite mass ratio limit. When the slip boundary condition is

assumed, we obtain a value for the hydrodynamic radius that agrees reasonably well with

the value obtained by fitting the infinite mass ratio viscosity versus volume fraction data

with an adjustable hydrodynamic radius to calculate the volume fraction. Both values are

less than the cross-interaction radius between the solvent and solute molecules.

A similar set of simulations in which the size ratio was also varied produced results

showing that the hydrodynamic radius was again larger than the bare spherical radius of

the solute particles, but less than the cross-interaction radius.

In all of the above analysis, it has been assumed that the perfect slip hydrodynamic

boundary condition is satisfied. In future work, better agreement between the different

results would probably be obtained by independently determining the degree of slip and the

hydrodynamic radius.
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APPENDIX: ZHANG INTEGRATOR FOR A NOSÉ-HOOVER BAROSTAT

The SLLOD equations of motion, with a Gaussian isokinetic thermostat and a Nosé-

Hoover barostat, equations (5), were used in this study. We also chose to use a symplectic

integration scheme based on that developed by Zhang and Martyna [25] and [26, Appendix

B]. This integration scheme requires the splitting of the equations of motion into parts which

are exactly soluble, and then factorising the propagator to mimimise error. Here we detail

the further steps required for the inclusion of the barostat.

With the inclusion of the barostat the positional equations of motion, and the associated

split equations of motion E1, become

E1 =







































ṙi = pi

mi
+ iγ̇yi − ζri

ṗi = 0

ζ̇ = 0

V̇ = 3ζV

,

where the centre of mass (R) is set to zero for simplicity, although it is not necessary. This

set of equations has the exact solution

xi(t) = x(0)e−ζt +

(

pxi

mi
+ γ̇

pyi

mi

)

1

ζ

(

1 − e−ζt
)

+ γ̇

(

y(0) −
1

ζ

pyi

mi

)

te−ζt

yi(t) = y(0)e−ζt +
pyi

mi

1

ζ

(

1 − e−ζt
)

zi(t) = z(0)e−ζt +
pzi

mi

1

ζ

(

1 − e−ζt
)

and

pi(t) = pi(0)

ζ(t) = ζ(0)

V (t) = V (0)e3ζt.

There are two sets of equations for the momenta equations of motion, a driven and undriven

set, both of which are unchanged from the original work, [25] and [26, Appendix B]. That
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is,

E2 =







































ṙi = 0

ṗi = Fi − α0pi, α0 = 1
2K0

∑

i
pi

mi
· Fi

ζ̇ = 0

V̇ = 0

,

and

E3 =







































ṙi = 0

ṗi = −iγ̇pyi − αγpi, αγ = − γ̇
2K0

∑

i
pxipyi

mi

ζ̇ = 0

V̇ = 0.

,

The solutions of these sets of equations of motion may be found in the references.

One further set of split equations of motion is required for the Nosé-Hoover barostat

multiplier. This set is

E4 =







































ṙi = 0

ṗi = 0

ζ̇ = 1
τp

(

p
p0

− 1
)

V̇ = 0,

(A.1)

which has the simple solution ri(t) = ri(0), pi(t) = pi(0), ζ(t) = ζ(0) + 1
τp

(

p
p0

− 1
)

× t

and V (t) = V (0). These equations of motion are then applied by using the factorizing the

propagator using the Trotter scheme. That is,

eiL∆t = eE4∆t/2eE3∆t/2eE2∆t/2 × eE1∆t × eE2∆t/2eE3∆t/2eE4∆t/2 + O(∆t3). (A.2)

More elucidating details may be found in the references.

ACKNOWLEDGMENTS

We wish to thank the Victorian Partnership of Advanced Computing (VPAC) and the

Australian Partnership for Advanced Computing (APAC) for generous grants of computer

28



time.

[1] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986),

2nd ed.

[2] J. M. Deutch and I. Oppenheim, J. Chem . Phys. 54, 3547 (1971).

[3] S. Bhattacharyya and B. Bagchi, J. Chem. Phys. 106, 1757 (1997).

[4] M. J. Nuevo, J. J. Morales, and D. M. Heyes, Phys. Rev. E 58, 5845 (1998).

[5] F. Ould-Kaddour and D. Levesque, Phys. Rev. E 63, 011205(9) (2001).

[6] I. K. Snook, B. O’Malley, M. G. McPhie, and P. J. Daivis, J. Mol. Liq. 103-104, 405 (2003),

in press.

[7] J. R. Schmidt and J. L. Skinner, J. Chem. Phys. 119, 8062 (2003).

[8] G. K. Batchelor, J. Fluid Mech. 131, 155 (1983).

[9] G. K. Batchelor, J. Fluid Mech. 137, 467 (1983).

[10] A. Einstein, Investigations on the theory of the Brownian movement (Dover, New York, 1956),

edited by R. Fürth, translated by A. D. Cowper.

[11] L. Bocquet, J.-P. Hansen, and J. Piasecki, J. Stat. Phys. 76, 527 (1994).

[12] T. Kihara, Intermolecular forces (Wiley, New York, 1976).

[13] J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971).
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