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The isotropic-nematic spinodals of solutions of rigid spherocylindrical colloids with various shape

anisotropies L /D in a wide range from 10 to 60 are investigated by means of Brownian dynamics

simulations. To make these simulations feasible, we developed a new event-driven algorithm that

takes the excluded volume interactions between particles into account as instantaneous collisions,

but neglects the hydrodynamic interactions. This algorithm is applied to dense systems of highly

elongated rods and proves to be efficient. The calculated isotropic-nematic spinodals lie between the

previously established binodals in the phase diagram and extrapolate for infinitely long rods to

Onsager’s �Ann. N. Y. Acad. Sci. 51, 627 �1949�� theoretical predictions. Moreover, we investigate

the shear induced shifts of the spinodals, qualitatively confirming the theoretical prediction of the

critical shear rate at which the two spinodals merge and the isotropic-nematic phase transition ceases

to exist. © 2006 American Institute of Physics. �DOI: 10.1063/1.2180251�

I. INTRODUCTION

Solutions of long and thin rigid rods interacting by ex-

cluded volume interactions, such as elongated colloidal par-

ticles and fd viruses,
1–3

exhibit lyotropic liquid crystalline

phase behavior. At low concentrations the rods form a disor-

dered isotropic phase, while at higher concentrations the in-

teractions cause the rods to align along a director in a nem-

atic phase. This phase still lacks translational order, which

will appear at even higher concentrations. Upon increasing

the rod number density, an isotropic solution will become

thermodynamically unstable if the concentration crosses the

isotropic-nematic spinodal �INS�. Conversely, a nematic

phase disorders into an isotropic state if the concentration is

reduced below the nematic-isotropic spinodal �NIS�. Outside

these spinodals lie two binodals, i.e., the concentrations at

which the coexisting isotropic and nematic phases of a phase

separated system are in thermal equilibrium. In the 1940s,

Onsager
4

derived expressions for the spinodals and binodals

of solutions of hard rods with infinite aspect ratios. The

phase diagram of lyotropic rodlike systems has since been

investigated extensively using theory,
5–16

experiments,
17,18

and more recently by computer simulations.
19–21

For a re-

view, we refer the reader to Vroege and Lekkerkerker.
22

Our objective is to establish the spinodals of a solution

of hard spherocylinders as a function of the aspect ratio of

the rods. To this effect, we employ computer simulations to

study the stability and dynamics of homogeneous ordered

and disordered solutions in the vicinity of the spinodal con-

centrations. The dynamics of solvated rods is best simulated

using Brownian dynamics �BD�. At the high aspect ratios we

are interested in, the hydrodynamic interactions between

rods are less important
23

than the excluded volume interac-

tions, which are readily incorporated by means of a potential

based on the overlap area. Since incorporating hydrodynamic

interactions leads to complicated and slow programs, but

does not affect the location of the spinodals, we here prefer a

simpler and more approximate approach, leaving for future

work the assessment of the importance of hydrodynamic in-

teractions on the dynamics. Although recent studies
24,25

of

the self and collective rotational dynamics of rods show that

this method works well for dilute systems, it unfortunately

turns out that the interaction potentials cause unsurmountable

difficulties when performing prolonged simulations of the

dense and highly elongated rods needed for a stable nematic

phase. We therefore introduce here an event-driven Brown-

ian dynamics algorithm, combining the dynamics equations

of traditional fixed time step BD with the collision-based

time step commonly used in simulations of hard bodies. The

resulting algorithm proves efficient at simulating concen-

trated solutions of rods, and displays a stable nematic phase

for elongated rods. The notoriously slow process of sponta-

neous ordering of an isotropic system above the INS takes

between a week and a month on a desktop personal computer

for the densities and high aspect ratios employed here.

Having direct access to the dynamics of the rods also

allows us to investigate the effect of shear flow on the phase

diagram. Under shear the rods have a propensity to aligna�
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along the flow direction, both in the isotropic and in the

nematic phase, thus decreasing the spinodal concen-

trations.
23,26–32

At sufficiently high shear rates the spinodals

are predicted to terminate at a coalescence point, eliminating

the phase transition between ordered and disordered states.

This paper is organized as follows: The event-driven

Brownian dynamics algorithm is described in detail in the

next section, followed by a validation against a traditional

BD program at the dilute and semidilute concentrations ac-

cessible to the latter. In Sec. III A we investigate the density

dependence of the self and collective rotational diffusion co-

efficients. The spinodals as functions of the aspect ratio are

presented in Sec. III B, and in Sec. III C we briefly discuss

the shear-induced shift of the spinodals. Finally, we summa-

rize our conclusions in Sec. IV.

II. SIMULATION METHOD

A. Event-driven algorithm

In this section we briefly describe the algorithm em-

ployed in event-driven Brownian dynamics simulations. The

Brownian particles, in this case rigid long and thin colloids,

are suspended in a Newtonian liquid with a stationary simple

shear velocity field V

V�r� = � · r , �1�

with

� = �̇�̂ and �̂ = �
0 1 0

0 0 0

0 0 0
� . �2�

Here r is a position, �̇ is the shear rate, and � is the trans-

posed velocity gradient tensor. This velocity field corre-

sponds to a flow in the x direction, with a gradient in the y

direction.

The forces and torques acting on the Brownian particles

have three origins: potential, friction, and random. The first

is due to the excluded volume interactions between solute

particles; the second is caused by the velocity and angular

velocity of the particle relative to the flow field; the last one

is due to thermal collisions between particles and solvent

molecules. For a very long and thin rod, due to its symmetry,

the rotational motion around the cylindrical axis does not

couple to the remaining degrees of freedom and may be ne-

glected. Generally, the Brownian motion of particles can be

described, on the Smoluchowski or diffusive time scale, by

stochastic differential equations �SDEs�, also known as

Langevin equations. For our long thin rods in a shear flow,

these equations are

r�t + �t� = r�t� + � · r�t��t + �−1�t� · FS�t��t + �r�t� , �3�

û�t + �t� = û�t� + �Î − û�t�û�t�� · � · û�t��t

+
1

�r

TS�t� � û�t��t + �û�t� . �4�

Here, r represents the center of mass position of a rod, û is a

unit vector along the axial direction of the rod, FS and TS

denote the systematic force and torque, respectively, Î is the

unit tensor, and �t is the time step used in the simulations. In

Eq. �3�, the translational friction tensor � is orientation de-

pendent:

� = ��ûû + ���Î − ûû� , �5�

where �� and �� are the translational friction coefficients for

motions parallel and perpendicular to the axis of the rod,

respectively, while in Eq. �4� �r denotes the rotational fric-

tion coefficient.
33,34

From hydrodynamics, the following ex-

pressions can be derived for long and thin rods of length L

and diameter D:

�r =
��sL

3

3 ln�L/D�
, �6�

�� =
2��sL

ln�L/D�
, �7�

�� = 2�� , �8�

where �s denotes the viscosity of the solvent. The random

displacement and reorientation �r�t� and �û�t�, respectively,

are sampled from Gaussian distributions with zero mean and

variances

��r�t��r�t�	 = 2kBT�−1�t��t , �9�

��û�t��û�t�	 = 2kBT
1

�r

�Î − ûû��t , �10�

with kBT the thermal energy. The brackets indicate canonical

ensemble averages. In the computer program, �r�t� and �û�t�
are treated in the same way as mentioned in our previous

paper:
24

�r�t� = G1
2kBT�t

��

û + G2
2kBT�t

��

û � êx

�û � êx�

+ G3
2kBT�t

��

û � �û � êx�

�û � �û � êx��
, �11�

�û�t� = G4
2kBT�t

�r

û � êx

�û � êx�

+ G5
2kBT�t

�r

û � �û � êx�

�û � �û � êx��
, �12�

where G1−5 are Gaussian random numbers with unit vari-

ance.

Note that the above algorithm will gradually change the

length of the unit vector û. There are two approaches to

correct for this artifact: one can reset the length of the rods at

the end of every time step by correcting either along the

initial or along the final direction of the rod. This point has

been thoroughly investigated by Cobb and Butler,
25

who

found that the first method is the proper way. We have tested

both methods in our simulations, and found that for the time

step used here, there was no significant difference between

the two approaches.

134906-2 Tao et al. J. Chem. Phys. 124, 134906 �2006�



Equations �3�, �4�, �9�, and �10� constitute the equations

of motion used in this paper. We shall now prove that they

give rise to the N-particle Smoluchowski equation,

�P

�t
= �

j=1

N 
3

4
Dt� j · �Î + û jû j� · �� jP + �P� j��

− � j · �P� · ri� + DrR̂ j · �R̂ jP + �PR̂ j��

− R̂ j · �Pû j � �� · û j��� , �13�

which is considered to be the fundamental equation of

motion
23,34,35

for the probability density function P of find-

ing the system at time t in a state z= �z1 , . . . ,zN� with

zi= �ri , ûi�, given that it was in the state z0 at time zero. Here,

� j denotes the gradient with respect to the position of par-

ticle j and R̂ j � û j ��ûj
, where �ûj

is the gradient with re-

spect to the orientation of particle j. Furthermore, the diffu-

sion coefficients Dt and Dr are given by

Dt =
D� + 2D�

3
=

kBT ln�L/D�
3��sL

, �14�

Dr =
3kBT ln�L/D�

��sL
3

. �15�

The proof that we are going to give should be considered to

be the decisive motivation for choosing the above equations

of motion. The equivalence of the Brownian dynamics equa-

tions of motion and the Smoluchowski equation in the ab-

sence of shear flow has been derived in Appendix B of Ref.

24. When shear is taken into account, an additional term will

appear in each of the expressions of the first moments de-

scribed by Eq. �B8� of Ref. 24:

��r;�t	 = − �−1�t� · ���t��t + � · r�t��t , �16�

��û;�t	 =
1

�r

û�t� � R̂��t��t + �Î − û�t�û�t�� · � · û�t��t .

�17�

Introducing these expressions into Eq. �B9� of Ref. 24 and

using

�Î − ûû� · �û = − û � R̂ , �18�

� dûA�û� · R̂F�z� = − � dû�R̂ · A�û��F�z� , �19�

where F and A are an arbitrary function and vector field,

respectively, we end up with two additional terms inside the

curly brackets on the right-hand side of Eq. �B11� of Ref. 24:

− � · � · rP�z,z0;t�

+ R̂ · ���Î − ûû� · � · û� � ûP�z,z0;t�� . �20�

Summing over all particles on the right-hand side of Eq.

�B11� in Appendix B of Ref. 24, we obtain the N-particle

Smoluchowski equation Eq. �13� given above.

In the case of dilute solutions, the systematic forces FS

and torques TS are hardly important and can be neglected.

However, in the case of concentrated solutions, mutual inter-

actions between rods play a crucial role and the systematic

forces FS and torques TS need to be taken into account. In

our previous model, FS and TS were derived from an ex-

cluded volume potential �, which was chosen to be propor-

tional to the overlap volume between two interacting rods.

This model was successfully applied to measure the self and

collective rotational diffusion coefficients in dilute and semi-

dilute rod solutions.
24

But when focusing on concentrated

systems of hard rods, some disadvantages of this model ap-

pear. As a result of the random displacements and reorienta-

tions, sometimes considerable overlaps and even crossings

cannot be prevented, irrespective of the smallness of the time

step �t. In order to achieve simulations of infinitely hard rod

systems, a new simulation technique had to be developed.

In our new simulation program, the excluded volume

potential and its corresponding systematic forces and torques

have been eliminated in favor of an event-driven technique,
36

inspired by the celebrated molecular dynamics simulations of

hard spheres by Alder and Wainwright,
37

which have been

extended to molecular dynamics simulations of infinitely thin

rods by Frenkel and Maguire.
38

Between collisions, every

rod performs a Brownian motion, independent of the other

rods. At a collision this motion changes abruptly. If the linear

and angular velocities of the colliding rods are known, it is

straightforward to solve the impulsive collision analytically

�including the two constraints on the lengths of the rod�. In

the overdamped case, when Brownian dynamics applies, the

system looses its memory of the initial velocities long before

its configuration has changed appreciably. In this case the

velocities can be eliminated altogether and the time step is

adjusted to the rate of change of the system configurations.

Random displacements and reorientations are applied to the

particles as, for example, in Eqs. �11� and �12�. If the particle

finds itself near a wall or any other obstacle, for example, a

companion particle, these random contributions have to be

modified in a way which is known analytically only in a few

simple cases with spherical particles.
39–41

It has been found,

however, that in these cases no noticeable differences occur

if the particle is moved in the usual way up to the point of

contact with the obstacle and new random displacements,

away from overlap, are chosen to complete the time step.

Several alternative approximate methods have been sug-

gested to remove possible overlaps at time t+�t, all being

more or less equally efficient.
42–47

We propose to use a similar method in the case of

Brownian dynamics simulations of rodlike colloids, i.e., we

use the random forces and torques at time t to advance two

colliding rods up to the time of contact t+	�t with 0
	


1, according to an obvious modification of the original

equations of motion,

ri�t + 	�t� = ri�t� + � · ri�t�	�t + �r�t�
	 , �21�

134906-3 Isotropic-nematic spinodals of rodlike colloids J. Chem. Phys. 124, 134906 �2006�



ûi�t + 	�t� = ûi�t� + �Î − ûi�t�ûi�t��

· � · ûi�t�	�t + �û�t�
	 . �22�

At contact, new random displacement �r��t� and reorienta-

tion �û��t� are sampled according to Eqs. �11� and �12�, and

ri�t + �t� = ri�t + 	�t� + � · ri�t + 	�t��t�1 − 	�

+ �r��t�
1 − 	 , �23�

ûi�t + �t� = ûi�t + 	�t� + �Î − ûi�t + 	�t�ûi�t + 	�t��

· � · ûi�t + 	�t��t�1 − 	� + �û�t�
1 − 	 , �24�

are used to complete the time step.

In order to advance the system from time t to time

t+�t, we perform the following steps:

�1� At time t, a list of all possible collision pairs is com-

piled consisting of those pairs whose shortest distance

is smaller than a certain distance criterion, say, rcut.

Shortest distance here means the shortest possible dis-

tance obtained by moving one point along the surface

of one rod and another point along the surface of the

other rod. This distance can conveniently be calculated

for cylinders capped with hemispheres of equal radius.

By regarding the oblong rods as being constructed from

several segments and using a segment based grid and

link list, this step may be accelerated appreciably.

�2� All rods are advanced from t to t+�t according to free

Brownian motions. The list of possible collision pairs is

completed by adding those pairs whose shortest dis-

tance is smaller than rcut at this new time t+�t. The

criterion rcut is the maximum separation between two

rods that still allows for a collision to occur within a

time lapse of
1

2
�t or, in other words, the maximum dis-

tance that can occur between two rods during a time

lapse of
1

2
�t after initial contact; hence if a collision

takes place between t and t+�t the distance between

the rods must be less than rcut at t and/or at t+�t.

Clearly, rcut is a function of the viscosity, time step, etc.

With a time step of 0.5 �s, it proves that using the

criterion rcut=D is always safe for preventing overlaps

between rods.

�3� For all pairs in the list, the time of first contact is de-

termined by interpolation of the already chosen Brown-

ian displacements and reorientations. To this end, the

time interval is subdivided into 100 smaller intervals

and configurations are attributed to the end points of

these intervals l using the original random numbers and

the time lapse l�t /100 since the beginning of the time

step. Note that this implies that the trajectories are as-

sumed to be rectilinear in configuration space, but that

the distance traveled along these trajectories varies with

the square root of the time lapse, 
l�t /100. Finally, for

each pair the time of first contact is detected and the

pairs are ordered according to increasing time of first

contact.

�4� The pair with the shortest time of first contact is ad-

vanced up to contact. Next, new random displacements

and reorientations are chosen for this pair such that the

rods separate initially and the table of collision pairs is

updated. New times of first contact are calculated for

all pairs in the list which involve one of the two rods of

the last collision and step 4 is repeated until all possible

collisions within the given time step have been ex-

hausted. This way, a rod may collide several times per

time step, as illustrated by rod j in Fig. 1, and it is even

possible for two rods to collide repeatedly with each

other in one step.

A comment as to the chosen method is in order here. As

we already mentioned, the exact propagator for colliding

Brownian particles is known for a few cases only. For point-

like particles near a flat wall, each particle which after a trial

step ends in the forbidden area should be mirrored in the

wall. For colliding rods no exact solution is known; the re-

flection method proposed by Doi et al.,
48

in which a particle

retraces its path after a collision, can only be considered a

very approximate solution. Harlen et al.
49

prevented rods

from crossing by introducing a normal constraint force be-

tween the rods, whose strength is determined by the condi-

tion that the nearest distance cannot drop below the rod di-

ameter. These procedures are only correct in the limit of very

small time steps, in which case the number of regular

Brownian steps by far exceeds the number of �approximate�
collision steps. Therefore, we have chosen to subdivide the

large main time step into smaller time steps for each collid-

ing pair, assuming that the smallest time step still exceeds the

contact time. The latter assumption is perhaps less realistic at

high shear rates, where the flow may force the rods to slip

along one another.

The simulation system in the present work is based on

the experimental data of the fd virus.
1

The simulation box is

cubic and contains N=cL� /D rods, with c=500 for L /D


30 and c=1000 for L /D�60, of diameter D=14.8 nm.

Here � denotes volume fraction, defined as �=
1

4
�nD2L for

hard rods with n the number density, and L� /D is refered to

as the scaled volume fraction. The aspect ratios L /D range

FIG. 1. A cartoon of the trajectories of three interacting rods during one

time step �t. On the left-hand side, i, j, and k mark the start positions of the

rods. On the right-hand side, i, j, and k denote the prospective positions of

the rods at the end of the step for the given initial set of random forces and

torques. At the collision moments 	1�t and 	2�t new random forces and

torques are drawn for the two colliding particles. The resulting modified

final positions are indicated by �double� primed indices. The solid lines

denote the traversed trajectories; dotted lines are extrapolations.
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from 10 to 68; hence the lengths of the rods range from

L=0.148 �m to L=0.888 �m. Water is used as the solvent,

with viscosity �s=10−3 Pa s. The temperature is 300 K. The

efficiency of the above described algorithm is largely deter-

mined by the chosen time step. At a low value of �t there

will be few collisions, but a large number of time steps are

needed; for high �t the length of the collision list grows

rapidly, and we might even need smaller interpolation steps

to determine the times of first contact. The optimum value of

�t will vary with the system studied. To make sure that dur-

ing one time step the rods will not move or rotate too much,

the time step �t is chosen in such a way that the maximum

random displacement is smaller than one-tenth of the thick-

ness of the rod and so that the maximum random reorienta-

tion will not be larger than 2D /10L. We thus arrive at a time

step �t=0.5 �s used for all simulations in this paper, which

is ten times larger than that used in our previous

simulations
24

with soft interactions between rods. Notice that

this is still two orders of magnitude smaller than the time

step for which Cobb and Butler
25

discern a difference be-

tween the two approaches to conserve the length of the unit

vector û.

B. Validation of the algorithm

In order to test the new algorithm, Brownian dynamics

simulations were carried out measuring the rotational self-

diffusion coefficients Dr��� of dilute and semidilute solu-

tions of rods. We measured these coefficients by calculating

�û�t� · û�0�	 = exp�− 2Dr���t� . �25�

The results are presented in Fig. 2 as a function of L� /D for

two values of L /D together with similar results obtained with

our previous program.
24

As is clear from this figure, the re-

sults obtained with the two programs are in perfect agree-

ment with each other. Besides this agreement, preliminary

simulations of the dynamics of dense solutions of rigid rods

in shear flow have revealed
50

periodic motions whose peri-

ods are in good agreement with experimental results. We

therefore consider our new algorithm to correctly describe

the dynamics of Brownian rods, even when applied to dense

systems.

C. Start configurations

The orientational order is usually measured by the scalar

order parameter P2, defined as P2= �3	−1� /2, where 	 is the

largest eigenvalue of the orientational order parameter tensor

S =
1

N
�
i=1

N

ûiûi. �26�

Hence, P2 is zero in an isotropic state and becomes unity in

a well aligned nematic state. The director n̂, given by the

eigenvector corresponding to 	, points along the average di-

rection of the rods. Investigations of the motions that n̂ ex-

hibits in a shear flow will be published elsewhere.
50,51

It is relatively easy to construct an initially perfectly

aligned state by randomly placing parallel rods in the box,

rejecting those rods that overlap with a previously accepted

rod. This procedure is repeated until the desired number of

rods is reached. An initially isotropic box is made in exactly

the same way, selecting both positions and orientations of

every inserted rod at random. This production becomes in-

creasingly challenging with rising volume fraction and as-

pect ratio, as more and more rods are being rejected. In prac-

tice, we find that scaled volume fractions L� /D of 3, 3.5,

and 4 are attainable this way for L /D=10, 15, and �20,

respectively. Williams and Philipse
52

have shown that the

theoretical maximum is given by L� /D=5.1, which lies well

above our scaled volume fractions. The isotropy of the pro-

duced boxes is tested by confirming that the order matrix is

isotropic, Sij�0�� 1

3
�ij, and by the absence of domains under

visual inspection.

III. RESULTS AND DISCUSSIONS

In this section, we describe the results of our simulations

of semidilute and dense systems of rodlike colloids. First, we

address the scaling of the rotational self-diffusion with den-

sity. In the remaining part of this section, we study the spin-

odals of the isotropic-nematic phase transition.

A. Rotational diffusion coefficients

In Fig. 3, we have plotted the rotational diffusion coef-

ficients as a function of L� /D for various aspect ratios.

At the relatively low volume fractions to which this fig-

ure applies, the rotational self-diffusion coefficients are vir-

tually equal to the collective rotational diffusion coefficients

�vide infra�, which by Dhont and Briels were predicted to be

linear in L� /D. The marked difference between the simula-

tion results and the theoretical prediction must be due to the

neglect of dynamic correlations in the latter. An alternative,

more phenomenological analysis based on the tube concept

has been presented by Doi and Edwards,
53,54

which was then

confirmed by Monte Carlo simulations
48

on systems of rods

with zero diameter. According to their theory, the rotational

self-diffusion coefficients in the semidilute regime should

scale as

FIG. 2. The rotational self-diffusion coefficients of rigid rods with aspect

ratios of L /D=30 and 68 as functions of the scaled volume fraction L� /D.

The open symbols denote results calculated with the new event-driven al-

gorithm for hard rods, while the solid symbols are obtained by our previous

algorithm in which the interaction potential between rods was proportional

to their overlap volume.

134906-5 Isotropic-nematic spinodals of rodlike colloids J. Chem. Phys. 124, 134906 �2006�



Dr��� = �Dr�0��nL3�−2, �27�

where � is some numerical parameter. In Fig. 4, we plot our

results as a function of nL3 on a log-log scale. It is clearly

seen from this figure that with increasing values of L /D, the

curves approach a limiting master curve with a slope equal to

−2, thereby confirming the prediction of Doi and Edwards.

Similar evidence has recently been published by Cobb and

Butler.
25

The collective rotational diffusion coefficient describes

the decay back to zero of a small perturbation �S�t�=S�t�
−

1

3
Î to the isotropic state. This can be obtained by starting

with an aligned state and picking up the late stage behavior.

For volume fractions where the decay becomes very slow,

this cannot be done any more and we resort to invoke On-

sager’s regression hypothesis,
55,56

which states that time de-

pendent fluctuations in a stable or metastable state decay

according to the macroscopic laws, i.e., in the present case,

��S�t��S�0�	 = ��S�0��S�0�	exp�− 6Dr
coll���t� , �28�

where Dr
coll��� is the collective rotational diffusion coeffi-

cient.

In Fig. 5, we present both the self and collective rota-

tional diffusion coefficients as functions of L� /D for L /D

=50. As mentioned before,
24

at lower volume fractions, both

diffusion constants are almost equal to each other. At higher

volume fractions, however, the collective diffusion coeffi-

cient keeps decaying, while the self-diffusion coefficient lev-

els off to remain nonzero.

B. Spinodals

As a result of the severe constraints set by the infinitely

hard interactions between the particles, dense systems of

rods undergo a phase transition from an isotropic state to a

nematic state. With increasing volume fractions, the orienta-

tions of the individual rods in the isotropic state become

more correlated, until at the isotropic-nematic spinodal �INS�
the isotropic state becomes absolutely unstable. At volume

fractions above the INS, the slightest perturbation will drive

an isotropic system towards the ordered nematic state. Simi-

larly, on lowering the volume fraction, an initially stable

nematic state will finally become unstable at the nematic-

isotropic spinodal �NIS� volume fraction. Actually no or-

dered state exists below the NIS, not even an unstable one.
6

Between the NIS and INS, the fate of the system depends on

its initial state. Initial states with enough order will end up in

the nematic state, others will end up in the isotropic state. In

the Onsager limit of infinitely long rods, the above scenario

has been described in detail by Kayser and Raveche.
6

For

completeness we notice that the thermodynamically stable

state is only obtained after the system has splitted into two

different phases whose densities are given by the two binodal

points.

In Fig. 6, we show the measured order parameter P2

against the scaled volume fraction L� /D for solutions of

rods with an aspect ratio of L /D=20. P2 is taken to be the

stable value when the system has reached equilibrium start-

ing from a predescribed state. The solid circles present order

parameters of initially perfectly aligned systems decaying to

the nematic or isotropic state. For dense systems when

L� /D�3.0, the order parameter P2 decays from unity to

some finite value indicative of the nematic state. In the cases

when the volume fraction L� /D
3.0, the nematic state be-

comes unstable and the order parameters P2 of these systems

FIG. 3. The rotational self-diffusion coefficients of rigid rods with various

aspect ratios as functions of the scaled volume fraction.

FIG. 4. The rotational self-diffusion coefficients of rigid rods with various

aspect ratios L /D as functions of the scaled volume fraction nL3 on log-log

scale. Here n is the number density. The solid line is a linear fit based on the

results for L /D=68.

FIG. 5. The simulated self �circles� and collective �squares� rotational dif-

fusion coefficients as functions of the scaled volume fraction L� /D for

solutions of rods with L /D=50.
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quickly decay to zero. The NIS can be read from the abrupt

decrease of the order parameter, which is considered to occur

at 3.0.

In order to measure the INS concentration, we per-

formed simulations of initially isotropic systems with various

volume fractions L� /D. In systems with L� /D
3.0, the

rods remained chaotic, while in cases with L� /D�3.1, all

systems spontaneously ordered into a nematic phase. The

isotropic-nematic spinodal is therefore located somewhere

between L� /D=3.0 and 3.1. The results of these simulations

are represented by the squares in Fig. 6.

For those systems where the density is very close to the

INS concentration, the order parameter becomes more and

more sensitive against the volume fraction, so that it is dif-

ficult to measure an accurate spinodal concentration using

this method. In order to better pinpoint the INS volume frac-

tion, we suggest to calculate the collective rotational diffu-

sion coefficient Dr
coll��� and search for the volume fraction

where it becomes zero. The rationale for this is that at the

INS, the driving force for the system to become either iso-

tropic or nematic is zero. In Fig. 6, besides the order param-

eters already discussed, we have plotted the collective rota-

tional diffusion coefficients for the case L /D=20. The solid

triangles are obtained by studying the late stages of decaying

perturbations �S�t� of the isotropic state, while the open tri-

angles result from applying Eq. �28�. The dashed line results

from a fit through these points according to

Dr
coll���

Dr�0�
= A� L

D
�INS −

L

D
���

, �29�

where �INS is the INS volume fraction. The fit is only appli-

cable in a restricted interval of L� /D values leading to a

value of A different from �L�INS /D�−�.

To map out the complete set of spinodals, similar simu-

lations were performed for systems with aspect ratios L /D

=10, 15, 30, and 60. The results are shown in Figs.

7�a�–7�d�. We estimated the nematic-to-isotropic spinodals

from the abrupt decay of the order parameter P2, obtaining

L�NIS /D�2.8, 2.9, 3.1, and 3.25 for solutions of rods with

L /D=10, 15, 30, and 60, respectively. As with boxes with

L /D=20, we calculated Dr
coll��� in the stable and metastable

isotropic states and calculated �INS by fitting the results with

Eq. �29�. The measured Dr
coll��� and the fits are shown in

Figs. 7�a�–7�d�. For curiosity we notice that the exponents in

Eq. �29� are well described by

� =
1


2
� L

D
�1/4

. �30�

We summarize our findings about the spinodals of the

isotropic-nematic phase transition by plotting the scaled vol-

ume fractions L�INS /D and L�NIS /D in Fig. 8 as functions of

D /L. It is seen that the larger the aspect ratio is, the more

discrepant are the volume fractions of the two spinodals,

FIG. 6. The scalar order parameter P2 vs the scaled volume fraction L� /D

for solutions of rods with an aspect ratio of L /D=20. The closed circles and

open squares denote stationary order parameters obtained when starting the

simulations with perfectly aligned and isotropic boxes, respectively. The

collective rotational diffusion coefficients are plotted as triangles. The

closed triangles are calculated from the decay of an initially aligned state;

the open triangles are obtained by autocorrelating thermal fluctuations, see

Eq. �28�. The dashed line is a fit with Eq. �29�, reaching zero at the

isotropic-nematic spinodal indicated by an arrow.
FIG. 7. The scalar order parameters P2 and collective rotational diffusion

coefficients Dr
coll��� as functions of the scaled volume fraction L� /D for

aspect ratios of 10 �a�, 15 �b�, 30 �c�, and 60 �d�. The arrows and numbers

refer to the INS spinodals obtained by using Eq. �29�. The values of

Dr
coll��� /Dr�0� in �a�–�d� are multiplied by 5, 8, 10, and 20, respectively.

FIG. 8. The INS �solid squares� and NIS �solid circles� spinodals as func-

tions of D /L. The open squares and circles are the binodals calculated in

Ref. 19. The use of D /L, rather than the shape anisotropy L /D, facilitates

the comparison with theoretical predictions. The theoretical binodals �open

triangles� and spinodals �solid triangles� at infinite aspect ratio are plotted on

the y axis for D /L=0; these points were not included when fitting the lines.
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while for short rods the region between the two spinodals

becomes quite narrow. The drawn lines in Fig. 8 are fits to

the results of our simulations with

L�INS/D = 1.4e−23D/L + 2.7,

�31�
L�NIS/D = 0.9e−12D/L + 2.5.

Their extrapolations to the Onsager limit, i.e., to D /L=0,

meet the vertical axis at L�NIS /D=3.4 and L�INS /D=4.0,

respectively. These results are in good agreement with pre-

vious theoretical predictions.
4,6

The open squares and circles

in Fig. 8 are taken from Table XI in Bolhuis and Frenkel,
19

and represent the binodals at the given values of D /L. It is

seen that our spinodals are between the two binodals at all

values of D /L, as they should be.

C. Spinodal shift due to shear

In shear flow, the director of a nematic system of rodlike

colloids will orient itself along the flow direction. Besides

this, the flow will slightly sharpen the orientational distribu-

tion of the individual rods and enlarge the order parameter.

Also in the isotropic state an applied shear flow will slightly

align the rods along the flow direction. As a result, the two

spinodals corresponding to the isotropic-nematic phase tran-

sition will slightly shift to lower volume fractions with in-

creasing shear rate. In accordance with our use in the previ-

ous section, we define �INS and �NIS as the volume fractions

where

dS

dt
= 0, S�0� =

1

3
Î �32�

and

dS

dt
= 0, S�0� = n̂n̂ , �33�

respectively, fail to have solutions close to S�0�. According

to Dhont and Briels
23

d

dt
S = − 6Dr
S −

1

3
Î +

5

4

L

D
��S�4�:S − S · S��

+ �̇��̂ · S + S · �̂T − 2S�4�:Ê� , �34�

where Ê=
1

2
��̂+ �̂T�, with the superscript T denoting a trans-

position, and S�4�= �ûûûû	. We added a factor of 5 /4 to the

term proportional to L� /D, which results from a slightly

better evaluation of the excluded volume interaction between

two rods with orientations û and û�, respectively �see Ap-

pendix A�. The above equation may be closed by using the

approximation
23

S�4�:M � 1

5 �S · M + M · S − S · S · M − M · S · S

+ 2S · M · S + 3SS:M� , �35�

where M is either S or Ê. Finally, � defines the flow by

V=� ·r and equals �̇êxêy for simple shear flow. Assuming

uniaxial ordering and �̇=0, Eq. �33� may be solved analyti-

cally to find �see Appendix B�

P2 =
3

4

1 −

32

9

D

L�
+

1

4
. �36�

The results of solving Eqs. �32� and �33� are presented

in Fig. 9. It is seen that with increasing Peclet number

Per= �̇ /Dr the two spinodal volume fractions approach

each other to become equal at the critical Peclet number

Per=0.16, where the isotropic-nematic phase transition

ceases to exist.
23

For Per=0 the spinodals are L�INS /D=4.0

and L�NIS /D=32/9 in good agreement with our finding in

the previous section.

In Fig. 10 we present the results obtained by solving

Eqs. �32� and �33� by means of Brownian dynamics simula-

tions for L /D=20 and 30 and for various values of the Peclet

number. Closed symbols refer to stationary states obtained

by starting with S�0�= n̂n̂, i.e., by solving Eq. �33�, while

open symbols refer to stationary states obtained by starting

with S�0�=
1

3
Î. Obviously, the aspect ratios pertaining to this

figure are all rather small for the results to apply to the case

L /D=� treated by the theory presented above. Unfortu-

nately, it is extremely difficult to extend these simulations to

systems with large aspect ratios. Still, from the results found

so far, it is clear that theory and simulations are in agreement

qualitatively. The order parameter is underestimated substan-

tially by the theory, but the evolution of the spinodals with

increasing Peclet number is qualitatively right. Moreover, the

estimate of 0.16 for the critical Peclet number is well in the

range �0.1, 0.2� found from the simulations.

IV. CONCLUSION

We have described a new event-driven Brownian dy-

namics algorithm with which concentrated solutions of rigid

spherocylinders in shear flow can be investigated. Compared

with existing Brownian dynamics simulations of rigid rods

where overlaps between particles are prevented by a repul-

sive potential, the novelty of the new code is in the fact that

its time evolution is controlled by collisions, like in time of

FIG. 9. �a� The theoretical scalar order parameter P2 as a function of the

scaled volume fraction L� /D at various shear rates for L /D=�. At low

shear rates, the flow induces a small paranematic alignment in the isotropic

phase and increases the alignment of the nematic phase. The end points of

these lines are the INS and NIS spinodals, which are plotted in �b� as a

function of the Peclet number Per. At the critical shear rate, corresponding to

Per=0.16, the spinodals coalesce and end; hence the two phases merge into

a single phase.
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flight molecular dynamics simulations. Excluded volume in-

teractions between the rods are considered to be infinitely

hard, but hydrodynamic interactions are neglected. The new

algorithm is very efficient, as exemplified by the fact that the

time step �t is ten times larger than the one used in our

previous work.
24

The general picture of the present paper is

summarized as follows: �i� The calculated rotational self-

diffusion coefficients Dr��� by both the new event-driven

Brownian dynamics simulations and our previous program

accord very well with each other, confirming the validity of

our new simulation algorithm. �ii� Isotropic-nematic spin-

odals are calculated of rod systems with various aspect ratios

L /D. The simulated INS and NIS spinodals are well located

between the binodals measured by Bolhuis and Frenkel
19

by

Monte Carlo simulations, as they should be. The extrapola-

tions of the spinodals to the infinitely long rod system are

in good agreement with previous theoretical predictions by

Onsager and Kayser et al. �iii� Shear shifts of the spinodals

to lower values are investigated. The measured order param-

eters deviate substantially from the theoretical predictions,
23

but the spinodal concentrations agree rather well. The esti-

mated critical rotational Peclet number Per, above which

only continuous and reversible changes of the order param-

eters can be found, agree qualitatively with the predicted

value Per=0.16.

The present successful Brownian dynamics algorithm al-

lows us to investigate in detail the dynamical properties of

nematic liquid-crystalline solutions of rigid spherocylinders

in shear flow. Some fascinating rheological phenomena such

as the oscillating responses of the director, i.e., tumbling,

kayaking, wagging, or flow-aligning, to a steady driving

“force” will be published separately.
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APPENDIX A: MAIER-SAUPE EXPANSION

In the derivation of Eq. �34�, the excluded volume of two

rigid rods gives rise to an effective potential proportional to

� d3R��R,û,û�� = 2DL2�û � û�� , �A1�

where R is the vector separating two rods with orientations û

and û�, respectively, and ��R , û , û�� equals 1 when two rods

overlap and 0 otherwise. The vector products �û� û�� may be

expanded in terms of polyadic products qk of û’s, which may

be chosen such that

� dûqkql � �k,l. �A2�

The first three of these may be chosen as

q0 = 1,

q1 = û , �A3�

q2 = ûû −
1

3
Î .

Expanding �û� û�� up to second order, we obtain

�û � û�� = a0 + a2q2�:q2, �A4�

where we have used the existing symmetry between û and

û�. Using

� dû�û � û�� = �2,

�A5�

� dû�û � û��q2 = −
�2

8
q2�,

we obtain

a0 =
1

4
� ,

�A6�

a2 = −
15

64
� .

Using Eq. �A6� in Eq. �A4� and rewriting the result a bit we

arrive at

FIG. 10. The simulated scalar order parameters P2 as functions of the scaled

volume fraction L� /D at various shear rates for �a� L /D=20 and �b� L /D

=30.
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�û � û�� =
21�

64
�1 −

5

7
ûû:û�û�� . �A7�

Compared with the corresponding expansion in Ref. 23, the

second term has an extra factor of 5 /4, which finally leads to

the factor of 5 /4 in front of the term proportional to L� /D in

Eq. �34�.

APPENDIX B: ZERO SHEAR NEMATIC ORDER
PARAMETER

For the case when �̇=0 the equation of motion of S

simplifies to

d

dt
S = − 6Dr
S −

1

3
Î +

3

4

L

D
��SS:S − S · S�� , �B1�

where we have made use of the closure equation �35�. As-

suming uniaxial symmetry, S may be written like

S = 	n̂n̂ +
1

2 �1 − 	�ê2ê2 +
1

2 �1 − 	�ê3ê3

=
1

2 �1 − 	�Î +
1

2 �3	 − 1�n̂n̂ , �B2�

where ê2 and ê3 are two unit vectors perpendicular to each

other and to n̂. Introducing this into Eq. �B1�, one finds after

some rewriting

d

dt
�S −

1

3
Î� = − 6Dr
1 −

9

8

L

D
�	�1 − 	���S −

1

3
Î� .

�B3�

A stationary nonzero value of S−
1

3
Î can only be found for

values of L� /D for which the factor between curly brackets

can be put equal to zero. This leads to Eq. �36�.
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