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An analytic study is presented of the asymptotic properties of the three-Coulomb-center problem eZ1ZZ. The
electron energies and wave functions of this system, where e designates an electron and Z, Z1 are bare nuclei,
are calculated asymptotically exactly for large distances L between the fragments of a quasimolecular system.
The electron exchange interaction between eZZ and Z1 fragments is also calculated asymptotically exactly and
used to estimate the electron-capture cross section in slow collisions of Z=1 and Z1=2,3 ,4 systems.
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I. INTRODUCTION

Solutions of the Schrödinger equation with two- and
three-Coulomb-center potentials are of considerable interest
from the point of view of various problems related to few-
body systems, particularly when considering their collision
dynamics in an adiabatic approximation. In molecular phys-
ics these systems play the same fundamental role as the hy-
drogen atom in atomic physics. The results obtained on the
two-center Coulomb problem eZ1Z2 have found numerous
applications in the physics of slow ion- �atom-� molecule
collisions, the spectroscopy of complex chemical com-
pounds, etc. �1–3�.

The three-center eZ1Z2Z3 Coulomb problem has received
much less attention in the past than the two-center Coulomb
problem. The reason for this is certainly related to the fact
that, while in the case of the two-center Coulomb problem
the Schrödinger equation allows a separation of variables in
prolate spheroidal coordinates �due to the higher dynamical
symmetry of the system�, such a separation of variables is
not possible in the case of the three-center Coulomb prob-
lem. Studies of the eZ1Z2Z3 system have so far been limited
to the use of approximate analytical methods only �4–6�.

The question of the existence of a variable separation op-
erator �, commuting with the Hamiltonian of an n- �n�2�
center Coulomb system, was studied for n=4 in �7� and in
the general case in �8�. It has been shown �8� that in all cases
when there is an operator � that commutes with the Hamil-
tonian ��=L+O, where O is an operator depending on inter-
center separations and the charges� the problem is reduced to
the one- and two-center problems. That means that the
Schrödinger equation of the eZ1Z2Z3 system is not separable
in any orthogonal coordinate system and, therefore, its solu-
tion necessarily deals with partial differential equations. This
fact substantially complicates all specific calculations of
adiabatic electronic wave functions �molecular orbitals

�MO’s�� and energies �potential energy surfaces �PES’s�� for
a given system. The lack of a separation of variables in the
eZ1Z2Z3 problem introduces complexity even in approximate
analytical treatments of the problem. These treatments usu-
ally address the asymptotic properties of the system at large
and small intercenter distances. However, for many physical
problems, knowledge of these properties is highly useful and
sometimes sufficient for their adequate description.

The aim of present article is to undertake an asymptotic
study of the discrete spectrum of the eZ1Z2Z3 system with
Z2=Z3=Z. The electronic Hamiltonian of this system de-
pends on three coordinates: Q1, Q2, and Q3 �further desig-
nated by the symbol Q�, which determine the configuration
of the nuclear triangle Z1ZZ. These coordinates are chosen to
represent the distance L of nucleus Z1 to the center of mass
of identical charges Z+Z, the distance R between the identi-
cal nuclei, and the angle � between the vectors R and L �see
Fig. 1�. However, as a matter of convenience of calculations,
in each considered part of configuration space we shall in-
troduce and use the most natural coordinates that facilitate
the asymptotic solution of the eZ1ZZ problem. The results
obtained will then be written in L, R, and � coordinates, in
which they acquire a more transparent physical meaning.

The article is organized as follows. In the next section,
after a brief summary of some of the known properties of the
eZ1ZZ system, asymptotic formulas for the energies of the
eZ1ZZ system in the form of power expansions in L are
presented. In Sec. III, the method of constructing the
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FIG. 1. Geometry of the quasimolecule eZ1ZZ and the notation
used.
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asymptotic form of the one-electron three-center wave func-
tion in different regions of configuration space is described
and its results presented. As an application of the obtained
wave functions, the leading term of the asymptotic �with
respect to L� expansion of the electron exchange interaction
in the eZ1ZZ system is derived.

In Sec. IV, the expression obtained for the exchange in-
teraction is generalized so as to take into account the velocity
of the relative motion of colliding particles. The obtained
asymptotic expressions for the potential energy surfaces, as
functions of L and �, are illustrated on the system H2

+�R
=2a0�+He2+, a0 being the Bohr radius. Furthermore, the ob-
tained asymptotic results on the PES and electron-exchange
interaction are used in this section to calculate the electron-
capture cross sections in slow collisions of H2

+ ions with
nuclei He2+, Li3+, and Be4+ by using the coupled-channel
formalism. Some concluding remarks are given in Sec. V.

Atomic units will be used in this work, unless otherwise
explicitly indicated.

II. FORMULATION OF THE PROBLEM
AND BASIC RELATIONS

The three-Coulomb-center quantum-mechanical problem
eZ1Z2Z3 consists in finding the eigenfunctions and eigenen-
ergies of the electron in the field of three fixed nuclei with
charges Z1, Z2, and Z3. For the case Z2=Z3=Z considered
here, the corresponding Schrödinger equation has the form

H� � �−
1

2
�re

−
Z1

r1
−

Z

r2
−

Z

r3
���re;Q� = E�Q���re;Q� ,

�1�

where re is the radius vector of the electron in an arbitrary
coordinate system, ri is the electron distance from the ith
nucleus �i=1,2 ,3�, and E�Q� and ��re ;Q� are the electron
energy and the wave function, respectively, which parametri-
cally depend on coordinates Q1=L, Q2=R, Q3=�, and Q
= �L ,R ,��.

In the present article we shall be interested in the
asymptotic solutions of Eq. �1� for large L, such that the
condition L�R is always satisfied. More specifically, we
shall be particularly interested in the asymptotic configura-
tions when the electron is bound either on the nucleus Z1 or
in the field of Z+Z charges. Keeping in mind the above-
mentioned asymptotic configurations, the solutions �MO’s�
of Eq. �1� can be divided into two classes: �I orbitals, which
asymptotically correspond to the interaction of hydrogenlike
atomic ions eZ1, and �II orbitals, which asymptotically cor-
responds to the interaction of a hydrogenlike molecular ion
eZZ with the nucleus Z1. The molecular energies E�Q� of the
system can similarly be divided into two classes EI �EII�,
which at �L→	� go over into the energies of the isolated
hydrogenlike atomic �molecular� ion eZ1 �eZZ�.

This asymptotic classification of the solutions of Eq. �1�
allows a convenient characterization of quasimolecular states
by sets of quantum numbers: the I-labeled states �R2,3→	,
0
r1�	� can be characterized by the parabolic quantum
numbers I= �n1 ,n2 ,m�, while the II-labeled states �R2,3→	,

0
r2,3�	� can be characterized by the set of spheroidal
quantum numbers II= �k ,q ,m2�. The quantum numbers k, q,
and m2 are related to the number of nodes of the wave func-
tion of the molecular ion eZZ along the prolate spheroidal
coordinates �, 
, and � �1�. Usually, for classification of
the states of the eZZ system, instead of k, q, and m2, the
spherical quantum numbers of the united atom limit, II
= �N��2m2� �N�=k+q+m2+1, �2=q+m2�, are used, together
with the parity quantum number p= �−1��2 �p�g, for �2
even, and p�u, for �2 odd�.

It is well known that for large internuclear distances L
→	 �0
R�	�, the asymptotic series for the energy of the
system eZ1ZZ contains two types of series that have different
functional dependences on L: one of them is a pure power
series in L, and the other contains a multiplicative factor that
exponentially decreases with increasing L. The pure power
series results from multipole expansion of the energy of
bound electrons �in eZ1 or eZZ� due to electrostatic interac-
tion with the distant perturber �Z+Z or Z1, respectively�.

The series containing exponential factors arises from the
delocalized electron motion in the field of two asymptotic
nuclear arrangements and describes the electron-exchange
interaction between these two arrangements. Normally, the
contribution of the latter series to the total electron energy is
�exponentially� small, but it is the one that removes the de-
generacy of the energies that may occur at certain internu-
clear distances �for states of the same symmetry� in the
multipole-expansion approximation �avoided energy cross-
ings�. By their physical nature, these exchange interaction
series are responsible for electron-exchange effects in the
dynamics of a slow collision.

In the present section we shall discuss power expansions
of the energy of the eZ1ZZ system only, postponing the dis-
cussion of the exchange interaction series to Sec. III. For the
system eZ1pp �p=H+� these expansions were considered in
�4,5�. What follows is a slight generalization of the results of
�4,5�.

We consider the following asymptotic �L→	, 0
R�	�
arrangements of the system eZ1ZZ:

eZ1ZZ ——→
L→	

↗eZ1 + Z + Z �a� ,

↘eZZ + Z1 �b� .
�2�

To these arrangements we associate the labels I �for �2a��
and II �for �2b��. We start the asymptotic energy calculations
with the arrangement �2a�, placing the coordinate origin at
the center Z1 �i.e., assigning re�r1� and taking the polar axis
along the vector L. At large separation between the frag-
ments eZ1 and Z+Z, the operator of electrostatic electron
interaction with the two identical nuclei can be expanded in
multipoles, the first three terms of the expansion being
�r1

−1R2,3�1�

V�r1� = − � Z

R2
+

Z

R3
� − �Z cos �2

R2
2 +

Z cos �3

R3
2 �r1 cos �1

− �Z sin �2

R2
2 +

Z sin �3

R3
2 �r1 sin �1 cos �1

+ w�r1�, w�r1� � O�R2,3
−3 � , �3�

with
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H = H1
�0� + V�r1� = −

1

2
�r1

−
Z1

r1
+ V�r1� . �4�

Here r1, �1, and �1 are the spherical coordinates of the elec-
tron in the coordinate system 	x1 ,y1 ,z1
, R2 and R3 are the
distances of Z1 to identical nuclei, and �2 and �3 are the
angles between the polar axis and vectors R2 and R3. The
coordinates R2,3 and �2,3 are related to L, R, and � by

R2,3 = �L2 � RL cos � + R2/4�1/2,

cos �2,3 = �L �
R cos �

2
��L2 � RL cos � + R2/4�−1/2.

�5�

As functions of the zeroth-order approximation it is naturally
to use linear combinations of the Coulomb parabolic func-
tions �9� �n1n2m�� ,� ,�1�:

�I
�0� = �

n1�n2�m�

an1�n2�m��R2,R3,�2,�3��n1�n2�m���,�,�1� , �6�

�n1n2m��,�,�1� =
�2Z1

3/2

n2 fn1m�Z1�

n
� fn2m�Z1�

n
� eim�1

�2�
,

�7�

where

fpm��� =
1


m
!
��p + 
m
�!

p!
��− p, 
m
 + 1,��e−�/2�
m
/2,

�8�

��¯� is the confluent hypergeometric function of the first
kind �10�, n is the principal quantum number, and �=r1�1
+cos �1� and �=r1�1−cos �1� are the parabolic coordinates.
The energies EI of the system eZ1+Z+Z and expansion co-
efficients an1n2m can be obtained as a solution of the secular
equation

�
n1�n2�m�

��n1n2m
V
n1�n2�m�� − �EI − E1
�0���n1n1�

�n2n2�
�mm��an1�n2�m�

= 0, �9�

where E1
�0�=−Z1

2 /2n2 is the energy of the unperturbed atom
eZ1 in a state with fixed principal quantum number n=n1
+n2+ 
m
+1. The analytic expressions for the matrix ele-
ments �n1n2m
V
n1�n2�m�� in the basis of parabolic functions
�7� can be easily calculated �see, e.g., �4��. Then, by equating
to zero the determinant of the system �9�, one obtains the
corrections to the energy levels in the first approximation of
perturbation theory �4�:

EI�Q� � En1n2m�R2,R3,�̃� = −
Z1

2

2n2 − � Z

R2
+

Z

R3
�

+
3Zn�

2Z1
� 1

R2
4 +

1

R3
4 +

2 cos �̃

R2
2R3

2 �1/2

, �10�

where �=n1−n2 is the “electric quantum number” and �̃ is

the angle between the vectors R2 and R3. For �̃=0 and R2
=R3, Eq. �10� goes over into the known formula for the
linear Stark effect �9,11�.

Let us now consider the asymptotic behavior of the EII
power energy series, corresponding to the asymptotic ar-
rangement �2b� and correlating at L→	 with the energy lev-
els of a hydrogenlike molecular ion eZZ. At sufficiently large
distances between the fragments Z1 and eZZ, when the con-
dition L�R is satisfied, it is possible to consider that the
nucleus Z1 interacts with the molecular ion eZZ as a whole.
To calculate this interaction to the first order of perturbation
theory, the above-described asymptotic method can be ap-
plied in somewhat extended form. This extension consists in
the substitution of atomic the electron density distribution
and atomic multipole momentum with those for the molecu-
lar ion and in taking into account that to the different projec-
tions of electronic angular momentum of eZZ ion on the
vector R there are different corresponding energies. In
implementing this extension, we follow the ideas of �4,5�.

For describing the electron motion and relative position of
nuclei in the quasimolecule eZZ+Z1, we introduce two sys-
tems of prolate spheroidal coordinates with origin at the mid-
point of the interval R and focal points at its ends:

� = �r2 + r3�/R, 
 = �r2 − r3�/R, � = arctan�y/x� , �11�

�̃ = �R2 + R3�/R, 
̃ = �R2 − R3�/R, �̃ = 0,

1 
 �� 	, − 1 
 

 1, 0 
 �� 2�,

1 
 �̃ � 	, − 1 
 
̃ 
 1. �12�

The prolate spheroidal coordinates �̃, 
̃ can be expressed in
terms of coordinates L, R, and � as

�̃ = ��L2 − LR cos � + R2/4�1/2 + �L2 + LR cos � + R2/4�1/2�R−1,


̃ = ��L2 − LR cos � + R2/4�1/2 − �L2 + LR cos � + R2/4�1/2�R−1.

�13�

For the asymptotic arrangement �2b�, the electronic Hamil-
tonian can be written as

H = H2
�0� + V1,

H2
�0� = −

1

2
�r −

Z

r2
−

Z

r3
,

V1 = −
Z1


L + r

� −

Z1

r1
. �14�

Following the standard procedures, we expand the wave
function �II�r ;Q� as

�II�r;Q� = �i��,
,�; �̃,
̃,R�

= �
j

�
mj

aijmj
��̃,
̃,R�� jmj

��,
,�;R� , �15�

with � jmj
being the wave functions of the discrete spectrum

of the quantum-mechanical eZZ problem:
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� jmj
��,
,�;R� = Njmj

�R�� jmj
��;R�Sjmj

�
;R�
exp�imj��

�2�
.

�16�

Here Njmj
�R� is the normalization constant, mj is the projec-

tion of the electron orbital momentum on the internuclear
axis R, and j designates the set of all remaining quantum
numbers �1,11�. Various expansions for the radial Coulomb
� jmj

�� ;R� and angular Sjmj
�
 ;R� spheroidal functions can be

found in �1,3�. For the perturbation V1 we use the Neumann
expansion �12�:

V1 = −
2Z1

R
�
n=0

	

�2n + 1��
k=0

n

�− 1�k�k� �n − k�!
�n + k�!�2

�Pn
k�
̃�Pn

k�
�Pn
k����Qn

k����cos k� , �17�

where �k=2−�k0, Pn
k and Qn

k are the associated Legendre
polynomials of first and second kind, respectively, and ��
���� are the smaller �larger� of the coordinates �̃ and �.

After substituting Eqs. �15� and �17� into Eq. �1�, multi-
plying the result from the left by �imi

* , and carrying out the
integration over electronic coordinates, we obtain an infinite
system of coupled equations for the coefficients aijmj

�analo-

gous to Eq. �9��. The energy eigenvalues EII�Q� are then
obtained by equating to zero the determinant of that system.
For sufficiently large distances between the nucleus Z1 and

the eZZ ion, when the condition �̃�2L /R�1 is satisfied, in
the second approximation of perturbation theory for potential
energy surfaces of eZZ+Z1 quasimolecules, we obtain

EII�Q� � Ei��̃,
̃,R� = �i�R� −
2Z1

R�̃
�1 +

1

3�̃2
�1 + �R

2
�3

�3
̃2

− 1�Aii
�20��R��� −

8Z1
2

�R�̃�4
��1 − 
̃2��i

��R� + 
̃2�i
��R�� ,

�18�

where the components of the polarizability tensor parallel
and perpendicular to the molecular axis ���R� and ���R� of
the eZZ ion are determined by the formulas

�i
��R� =

R8

128�
j

�
�Aij

�10��R��2

� j�R� − �i�R�
,

�i
��R� =

R8

256�
j

�Aij
�11��R��2

� j�R� − �i�R�
, �19�

Aij
�n���R� = Nij�R���

−1

1

Si�
;R�Pn
��
�Sj�
;R�d
�

1

	

�i��;R�Pn
����� j��;R��2d�

− �
−1

1

Si�
;R�Pn
��
�Sj�
;R�
2d
�

1

	

�i��;R�Pn
����� j��;R�d�� . �20�

Here �= 
mi−mj
, Nij�R�=Ni�R�Nj�R�, and �i�R� are the en-
ergies of the hydrogenlike molecular ion eZZ �here we have
omitted the subscript mj in the functions � jmj

�� ;R�,
Sjmj

�
 ;R�, and normalization constant Njmj
�. The prime on

the summation sign in Eq. �19� indicates that for �i
��R� the

term with j= i in the sum should be omitted. Equation �18�
applies for states of the molecular ion eZZ with projection of
electron orbital momentum mj =0 and for nuclear configura-
tions for which the condition R2Aij

�1��R���2�� j�R�−�i�R�� is
satisfied.

It should be emphasized that the electron wave functions,
determined by Eqs. �6� and �15�, describe the electronic mo-
tion in the regions of configuration space where its interac-
tion with the other fragment�s� can be treated as a perturba-
tion. There are, however, regions in configuration space
where this assumption does not hold and where the electron
wave function has to be determined by nonperturbative
methods. These regions are obviously related to the delocal-
ized �underbarrier� electron motion and to the previously
mentioned exponentially small corrections to the electronic
energy. In the next section we consider the electronic motion

in these regions and construct the corresponding asymptotic
three-center electron wave function.

III. ASYMPTOTIC FORM OF THE EXCHANGE
INTERACTION OF A HYDROGENLIKE MOLECULAR

ION INTERACTING WITH A NUCLEUS

For the calculation of the charge-exchange probabilities of
a hydrogenlike molecular ion eZZ interacting with a fully
stripped ion Z1,

eZZ + Z1 → eZ1 + Z + Z , �21�

under the condition that collision velocities be not very
small, and when during the characteristic interaction time the
rotation of the molecular ion axis R can be neglected, it is
necessary to know the matrix element ��Q� of the exchange
interaction of the diabatic electronic states of the quasimo-
lecular systems eZZ+Z1 and eZ1+Z+Z. If the electron bind-
ing energies EII

�0� and EI
�0� of the molecular ion eZZ and,

respectively, the nucleus Z1 do not differ considerably from
each other, the exchange interaction ��Q� can be expressed
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in terms of a surface integral over the S surface that divides
the electron localization in the initial and final states of re-
action �21� �13�:

��Q� = �
S

dS��I
* � �II − �II

* � �I� . �22�

Here, as in the previous sections, the electronic wave func-
tions �I and �II at infinite distances L go over into the wave
functions �I

�0� and �II
�0� of the hydrogenlike eZ1 ion and the

molecular eZZ ion, respectively, while at finite L they take
into account the influence of the other fragment.

For an asymptotic �at large L� calculation of the surface
integral �22� it is necessary to know the electron wave func-
tions �I

�0� and �II
�0� in the internuclear region far from both

fragments Z1 and Z+Z. The potential of the two identical
Coulomb centers can be represented there as the sum of a
pure Coulomb part −Z� /r �with a total charge Z�=2Z� and a
short-range component:

Vs�r� =
Z�

r
−

Z


r + R/2

−

Z


r − R/2

.

According to this partition we shall rewrite the Schrödinger
equation �1� of the eZ1ZZ problem in the form

�−
�

2
−

Z1

r1
−

Z�

r
+ Vs��i = Ei�i, i = I,II, �23�

which is more convenient for solving it using various ap-
proximations. Considering this equation in the asymptotic
region r1�r�L /2 to within the terms of the order of
O�R2 /L3�, the short-range potential Vs in Eq. �23� can be
neglected. In this case, the variables in the remaining
Schrödinger equation �23� �with the switched off interaction
Vs� can be separated into prolate spheroidal coordinates:

�1 =
r1 + r

L
�1 
 �1 �	�, 
1 =

r1 − r

L
�− 1 
 
1 
 1� ,

�1 = arctan� y1

x1
� �0 
 �1 � 2�� , �24�

and the corresponding electron wave functions can be repre-
sented as a product

�i��1,
1,�1;L� = Ci�L��i��1,L��i�
1,L�
exp�imi�1�

�2�
.

�25�

Here Ci�L� is the normalization constant, and the meaning of
the indices i= I , II is the same as in the previous section. The
functions �i��1 ,L� and �i�
1 ,L�, which are usually referred
to as radial and angular Coulomb spheroidal functions
�CSF’s�, respectively, satisfy the following system of
coupled differential equations �1,11�:

d

d�1
��1

2 − 1�
d�i

d�1
+ �EiL

2

2
��1

2 − 1�

+ �Z1 + Z��L�1 −
mi

2

�1
2 − 1

+ �i��i = 0,

d

d
1
�1 − 
1

2�
d�i

d
1
+ �EiL

2

2
�1 − 
1

2�

+ �Z� − Z1�L
1 −
mi

2

1 − 
1
2 − �i��i = 0, �26�

where �i is the separation constant in the spheroidal coordi-
nates �24�, which depends on L and on the complete set of
quantum numbers i= I , II.

The main contribution to the surface integral �22� at as-
ymptotically large distances L gives the part of the surface S
with a small area near the axis L only, where �1−1
L−1 and

1�0. The solution of the system of equations �26� in this
area can be derived using the well-known technique of “cor-
rective functions” �CF’s� introduced in �13�. We shall deter-
mine the zeroth-order approximation for �I��1 ,
1 ,�1 ;L� as
a product of the one-center CSF �I

�0� and a long-range cor-
rective function  I:

�I��1,
1,�1;L� = �I
�0���1,
1,�1;L� I��1,
1�

= �I
�0� 1��1� 2�
1� , �27�

where the one-center CSF �I
�0� is given by

�I
�0� = CI

�0��L��I
�0���1,L��I

�0��
1,L�
exp�im1�1�

�2�
, �28�

and the radial �I
�0� and angular �I

�0� functions satisfy the
system of equations �26� with Z��2Z=0. Under the condi-
tion of large L, we shall use in Eqs. �26� the asymptotic
expansion for the separation constant �I as a series in powers
of L �1,14�: �I=−Z�L+�I

�0�+O�L−1�, where �I
�0� is the sepa-

ration constant of this system for Z�=2Z=0. Substituting the
expression �27� into �26� and taking into account the terms
proportional to L only, we obtain for the corrective functions
 1 and  2 the following differential equations of the first
order:

Z1

n
 1� + �Z�

2
−

Z�

�1 + 1
� 1 = 0,

Z1

n
 2� + �Z�

2
+

Z�


1 − 1
� 2 = 0.

�29�

Here n is the principal quantum number defined by EI
�0�

=−Z1
2 /2n2. The solution of these equations satisfying to con-

dition  I= 1 2→1 at �1→1 and 
1→−1 is given by the
expression

 I =  1��1� 2�
1� = � 1 + �1

1 − 
1
�nZ�/Z1

exp�−
nZ�

2Z1
��1 + 
1�� .

�30�

As can be seen from Eq. �30�, the corrective function  I
contains only one parameter: the ratio nZ� /Z1. This results in
an interesting consequence in the case of a Coulomb degen-
eracy. The degenerate hydrogenlike electronic states at L
=R2,3=	 on the ion Z1 undergo a linear Stark effect: their
energy �according to Eq. �10�� shifts from the original level
by a value of the order of L−2 �at L�R2,3�R /2�. This shift,
being of higher order of smallness, can be neglected when
deriving the corrective function  I. However, when the de-
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generacy is removed, one should use the “correct” represen-
tation for the wave functions �I

�0� of the zero approximation,
which differ considerably in the spherical, parabolic, and
prolate spheroidal coordinates. All these wave functions,
having the same principal quantum number n, are corrected
�multiplied� by the same CF  I in the internuclear region r
�r1�L /2, as  I depends only on the zeroth-order energy
value of the perturbed ion eZ1.

Since the CF  I is identical for all states having the same
principal quantum number n, for deriving the correct
asymptotic form of three-center wave function �I one should
use the correct “intra-atomic” wave functions �I

�0� of the
zeroth-order approximation. However, this problem is a non-
trivial one for the following reasons.

One can represent the CSF �I
�0� with certain principal and

magnetic quantum numbers n and m1 as a linear combination
of the parabolic wave functions �n1n2m1

��1 ,�1 ,�1� with para-
bolic quantum numbers n1 and n2:

�I
�0� = �n�1

n
1
m1

�0� ��1,
1,�1;L�

= �
n1+n2=n−
m1
−1

Un1n2

n�1
n
1�L��n1n2m1

��1,�1,�1� . �31�

Here n�1
and n
1

are the quantum numbers which deter-
mine the zeros of the one-center radial and angular CSF’s,
�I

�0���1 ,L� and �I
�0��
1 ,L�, respectively, inside appropriate

intervals, and n�1
+n
1

+ 
m1
+1=n. Under the condition of
large, but finite L, the spheroidal coordinates �24� in the
intra-atomic region are close to the parabolic ones �1, �1:
�1→1+�1 /L and 
1→−1+�1 /L, where �1=r1�1+cos �1�
and �1=r1�1−cos �1�.

Closed expressions for the transformation coefficients
Un1n2

n�1
n
1�L�, which specify the expansion �31� of one-center

CSF �n�1
n
1

m1

�0� over the parabolic basis �n1n2m1
, are obtained

in �15�. We shall not present here their rather cumbersome
expressions, but rather we shall mention only their most im-
portant properties in the context of our further calculations.

In the expansion �31�, which represents the one-center
CSF �n�1

n
1
m1

�0� as a linear combination of n�1
+n
1

+1 Cou-

lomb parabolic functions �n1n2m1
�where n1+n2=n�1

+n
1
�,

one of the coefficients Un1n2

n�1
n
1�L� is of the order of O�1� and

the remaining are small, proportional to L−k �k!1�. It means
that in the vicinity of the Coulomb center Z1, the CSF
�n�1

n
1
m1

�0� tends to one of the parabolic functions with quan-

tum numbers n1=n�1
and n2=n
1

at L→	. In the inter-
nuclear region r1�r�L /2 near to the axis L, the contribu-
tion to the asymptotic wave function �n�1

n
1
m1

�0� gives n�1
+1

parabolic functions �n1n2m1
with quantum numbers n1

=0 ,1 ,2 , . . . ,n�1
and n2=n�1

+n
1
−n1. This circumstance re-

sults in a rather cumbersome analytic expression for the ex-
change interaction ��Q�.

Thus, in the case of a degeneracy of the initial and final
states in electron-capture reactions in the eZ1ZZ system, we
meet the problem of the exact determination of hydrogenlike
functions �n�1

n
1
m1

�0� in the spheroidal coordinates �24�. In the

general case, this problem has not been solved until now.
However, in a number of particular cases it is possible to
obtain approximate analytic expressions for these functions.
Recently, the one-center CSF’s have been studied extensively
in the region of large distances L between the fragments,
when the quantum numbers n�1

and n
1
are not too large �see,

for example, �16,17� and references therein�. In this region,
the leading asymptotic terms of radial �n1n2m1

�0� ��1 ,L� and an-

gular �n1n2m1

�0� �
1 ,L� CSF’s are determined by the expressions
�16–18�

�n1n2m1

�0� ��1,L� = exp�−
Z1L

2n
��1 − 1����1

2 − 1�
m1
/2��1 + 1�n2

���− n1, 
m1
 + 1;
Z1L

n
��1 − 1���1 + O�L−1�� ,

�32�

�n1n2m1

�0� �
1,L� = exp�−
Z1L

2n
�1 + 
1���1 − 
1

2�
m1
/2�1 − 
1�n1

���− n2, 
m1
 + 1;
Z1L

n
�1 +
1���1+O�L−1�� .

�33�

We note that above asymptotic expressions are correct
under the condition of sufficiently large L and in the region
of electron coordinates near the L axis, where ��1−1�
L−1

and 

1

L−1. If 
1�0, the argument of the degenerated
hypergeometric function ��a ,b ; t� in Eq. �33� has a large
value. Therefore, it is necessary to take into account only the
leading terms of the asymptotic expansion of ��a ,b ; t� at t
→	 �10�. Having this in mind, for the normalized electron
wave function �I we obtain the following asymptotic ex-
pression in the coordinate region ��1−1�
L−1 and 
1�0:

�I = CI exp�− �Z1L

n
+

nZ�

Z1
� ��1 + 
1�

2
���1 − 1�
m1
/2 ��− n1, 
m1
 + 1;

Z1L

n
��1 − 1��

��1 − 
1
2�
m1
/2�1 + 
1�n2�1 − 
1�n1−nZ�/Z1

exp�im1�1�
�2�

�1 + O�L−1�� , �34�

CI = �− 1�n2
�2


m1
!
Z1

3/2

n2 2−n2−
m1
/2+nZ�/Z1�Z1L

n
�n2+
m1
� �n1 + 
m1
�!

n1!n2!�n2 + 
m1
�!
. �35�
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We note that apart from the earlier used “laboratory” co-
ordinate system 	x1 ,y1 ,z1
, with the z1 axis directed along
the vector L, it is convenient to introduce the “molecular”
coordinate system 	x ,y ,z
 rigidly connected with the vector
R, since the coordinates of the electron and the system Z
+Z are most conveniently defined in this coordinate system
�see Fig. 1�. It is customary to place the origin of the coor-
dinate system 	x ,y ,z
 in the midpoint of the interval R and to
orient the z axis along the molecular axis R. The transition
from coordinate system 	x ,y ,z
 to the 	x1 ,y1 ,z1
 system is
determined by the three Euler’s angles �, �, and � �see, e.g.,
�19��. As far as the relative orientation of the axes �x ,x1� and
�y ,y1� are not fixed beforehand, it is customary to place these
pairs of axes in the mutually perpendicular planes �see Fig.
1�, so that the corresponding Euler’s angles are equal to zero,
�=�=0.

The important simplifying factor in calculating the ex-
change interaction matrix element �22� is the possibility to
represent the normalized eigenfunctions of the molecular ion
eZZ at large distances r�1 in the form �one-center-type
wave function�

�II
�0��r� = A�2

m2�2���r2Z/�2−1e−�2rexp�im2��
�2�

. �36�

Here � and � are the spherical angles of the vector r in the
molecular coordinate system 	x ,y ,z
, m2 is the projection of
the electron orbital momentum �2 on the molecular axis R,
�2=�−2EII

�0��R�, and EII
�0��R���N��2m2

�R� is the electron
binding energy in the molecular ion eZZ. For the sake of
convenience of calculations, we represent A�2

m2�2��� as an ex-
pansion over the normalized associated Legendre polynomi-

als P̄�
m�cos ��:

A�2

m2�2��� = �
s=0,1

	

�ds
m2�2P̄s+
m2


m2 �cos �� ,

P̄�
m�cos ��eim�/�2� � Y�

m��,�� . �37�

Here Y�
m�� ,�� are the normalized spherical harmonics �10�

and the prime on the sum symbol designates that the sum-
mation is carried out over those s having the same parity as
the number �:

� = �0, �2 − 
m2
 , even,

1, �2 − 
m2
 , odd.
�

In Table I we give the values of the coefficients ds
m2�2 for

the ground and first three excited states of the molecular
hydrogen ion H2

+ �at R=2 a.u.�, obtained by matching the
asymptotic expression �36� for the wave functions with the
exact electron wave functions calculated by the algorithm
described in �1�. The wave function matching was performed
in the region of electron distances 2a�r�3a for the
ground-state wave function and in the region 2a�r�4a for
the excited-state wave functions, where the value of a is of
order of the equilibrium internuclear distance of H2

+�1s"� in
its ground vibrational state.

We shall now calculate the exchange interaction �22� in
	x ,y ,z
 coordinates. In the transition from 	x ,y ,z
 to
	x1 ,y1 ,z1
 coordinates, expression �37� for the asymptotic
coefficient A�2

m2�2��� is transformed as �19�

A�2

m2�2���
eim2�

�2�
= �

s=0,1

	

� �
k=−�s+
m2
�

s+
m2


ds
m2�2

�Dkm2

s+
m2
�0,�,0�Ys+
m2

k ��̄,�̄� , �38�

where Dmm�
j �� ,� ,�� is the Wigner D function and �̄ and �̄

are the spherical angles of the vector r in the 	x1 ,y1 ,z1

coordinate system �note that the angles �̄ and �1 have obvi-

ously the same meaning�. The angles � ,� and �̄ , �̄ are mu-
tually related by �19�

cos � = cos �̄ cos � + sin �̄ sin � cos �̄ ,

cot � = cot �̄ cos � −
cot �̄ sin �

sin �̄
.

The leading term of the asymptotic form of the unper-
turbed molecular wave function �II

�0� in the coordinate region
far from the Coulomb centers Z+Z, which makes the main
contribution to the surface integral �22�, can be represented,
according to Eqs. �36�–�38� and �24�, in a factorized form

�II
�0� = �L�1 − 
1�

2
�Z�/�2−1

exp�−
�2L

2
�1 − 
1��

�exp�−
�2L

2
��1 − 1�� �

s=0,1

	

� �
k=−�s+
m2
�

s+
m2


ds
m2�2

�Dkm2

s+
m2
�0,�,0�Ys+
m2

k ��̄,�̄� . �39�

TABLE I. Coefficients ds
m2�2 = d̄s

m2�2�10n of the expansion �37� calculated for the wave functions of the hydrogen molecular ion H2
+ for

the ground and first three excited states.

State
\

Coeff. 1s" n 2s" n 2p" n 2p� n

d̄�
m2�2 4.353±0.034 0 −7.950±0.763 −1 1.946±0.012 0 8.74±0.09 −1

d̄�+2
m2�2 7.076±0.318 −1 −3.95±0.31 −2 1.20±0.10 −1 3.0±0.27 −2

d̄�+4
m2�2 4.66±0.86 −2 −9.22±0.64 −4 4.32±0.98 −3 7.7±2.3 −4

d̄�+6
m2�2 2.37±0.90 −3 −1.92±0.62 −5 1.11±0.55 −4
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In the coordinate region ��1−1�
L−1 and 
1�0 of interest
here, the electronic wave function �II
=CII�II��1 ,L��II�
1 ,L�eim2�̄�2��−1/2 satisfies to the system
of equations �26�, where now mi=m2, EII=−�2

2 /2−Z1 /L, and
�II=L��2−Z1−Z��+Z1 /�2+O�L−1�. According to the
method used above, we shall search for the functions
�II��1 ,L� and �II�
1 ,L� as products:

�II��1,L� = exp�−
�2L

2
��1 − 1�� ̄1��1� , �40�

�II�
1,L� = exp�−
�2L

2
�1 − 
1���1 − 
1�Z�/�2−1 ̄2�
1� . �41�

By substituting Eqs. �40� and �41� into Eq. �26� and keeping
in the equation for  ̄2�
1� the terms proportional to L, but in
the equation for  ̄1��1� keeping also the terms of the order of
unity, we arrive at a system of two ordinary differential equa-
tions of the first order for the CF’s  ̄1��1� and  ̄2�
1�. The
solution of this system, which satisfies the boundary condi-
tion  II�  ̄1��1� ̄2�
1�→1 at �1→1 and 
1→1, can be rep-
resented as

 II��1,
1� = � 1 + �1

1 + 
1
�Z1�2

exp�−
Z1

2�2
��1 − 
1�� . �42�

With this expression for  II, the leading term of the
asymptotic form of �II at L→	 is

�II = CII exp�−
1

2
��2L +

Z1

�2
���1 − 
1��

��1 − 
1�2Z/�2−1� 1 + �1

1 + 
1
�Z1/�2 eim2�̄

�2�
�1 + O�L−1�� . �43�

Matching expression �43� with the asymptotic form �39� of
the unperturbed electron wave function �II

�0� in the region
sufficiently far from the Coulomb centers Z+Z, we find the
normalizing factor CII in the form

CII
eim2�̄

�2�
= �L

2
�2Z/�2−1

�
s=0,1

	

� �
k=−�s+
m2
�

s+
m2


ds
m2�2

�Dkm2

s+
m2
�0,�,0�Ys+
m2

k ��̄,�̄� . �44�

As integration surface in Eq. �22� we take the surface of
the paraboloid 
1=const. Then, by substituting into Eq. �22�
the expressions �34� and �43� for the wave functions �I and
�II, respectively, and having in mind that �̄��1, we obtain
the final expression for the exchange interaction ��Q�:

��L,R,�� = 2
m1
+n1+�2Z−Z1��nZ1
−1−�2

−1� exp�−
L

2
�Z1

n
+ �2� −

1

2
�2nZ

Z1
+

Z1

�2
�� �2Z1�3/2

n2 �Z1

n
�n2+
m1
�Z1

n
+ �2�−
m1


Ln2+2Z/�2

�� �n1 + 
m1
�!
n1!n2!�n2 + 
m1
�! �

s=0,1

	

�ds
m2�2Dm1m2

s+
m2
�0,�,0�
1


m1
!
��2s + 2
m2
 + 1��s + 
m1
 + 
m2
�!

2�s + 
m2
 − 
m1
�!
. �45�

From Eq. �45� it follows that from the n2 states with the same principal quantum number n the dominant contribution to the
exchange interaction ��L ,R ,�� at asymptotically large L gives the state with n1=m1=0,

��L,R,�� = 2�2Z−Z1��nZ1
−1−�2

−1� �2Z1�3/2

n2�n − 1�!
�Z1

n
�n−1

exp�−
L

2
�Z1

n
+ �2� −

1

2
�2nZ

Z1
+

Z1

�2
��Ln+2Z/�2−1

� �
s=0,1

	

�ds
m2�2D0m2

s+
m2
�0,�,0��s + 
m2
 + 1/2. �46�

IV. APPLICATIONS OF �„L ,R ,�…: ELECTRON-CAPTURE
CROSS SECTION FOR Z1+H2

+ COLLISIONS
„Z1=2,3 ,4…

As an application of the obtained result for ��L ,R ,�� we
shall calculate the cross section for electron capture in slow
collisions of H2

+ with bare nuclei Z1 �Z1=2 ,3 ,4�:

H2
+ + He2+ → 2H+ + He+, �47a�

H2
+ + Li3+ → 2H+ + Li2+, �47b�

H2
+ + Be4+ → 2H+ + Be3+, �47c�

within the framework of a semiclassical coupled-channel for-
malism �20�. These reactions play an important role in both
fusion and astrophysical plasmas �21�, and reaction �47a�
have been the subject of several recent studies �22–27�.

The large experimental values of the total cross sections
of reaction �47a� �several times 10−16 cm2 at the collision
velocity of �1 a.u. �22,23�� suggest that electron capture
takes place at large distances between colliding particles.
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That justifies the use of the derived asymptotic form of the
coupling interaction ��L ,R ,�� for a theoretical study of
these processes.

In the coupled-state cross-section calculations for reac-
tions �47� we shall use the diabatic two-center basis �wave
functions of the types �34� and �43�� and designate by a1 and
�1 the amplitude and wave function of the initial state Z1
+H2

+�1s"�, respectively, and by aj and � j �j=2, . . . ,N� the
amplitudes and wave functions of the final states of the sys-
tem 2H++eZ1�nn1n2m�. The following parabolic final states
were included in present calculations: �1000�, �2100�,
�2010�, �3200�, �3110�, �3020�, �4030�. Following the stan-
dard scheme �20,22�, we expand the electron wave function
#el of the colliding system in terms of the diabatic �in our
case� states �k,

#el = �
k=1

N

ak�k exp�−
i

v
�

z0

z

Ek
�d�dz�� , �48�

and for the transitions amplitudes ak we obtain the system of
coupled differential equations

dak

dz
= −

i

v �
n=1

n�k

N

anHnk exp�−
i

v
�

z0

z

�En
�d� − Ek

�d��dz�� , �49�

where v is the relative collision velocity, z=�L2−�2, � is the
impact parameter, and z0 is a constant to be defined later.

In the framework of the adopted asymptotic approach, the
diabatic PES Ek

�d��Hkk of the initial �k=1� Z1+H2
+�1s"� and

final �k=2, . . . ,N� 2H++eZ1�nn1n2m� states in reactions �47�
can be determined �within the same accuracy as that for the
exchange interaction� by the expressions �10� and �18�–�20�,
respectively. We note that the asymptotic expressions �10�
and �18�–�20� represent the electronic energy only; to obtain
the values for Hkk one should add the potential energy of the
Coulomb interaction between the system’s fragments Z+Z
and Z1: Hkk=EI,II+Z1Z /R2+Z1Z /R3. The nondiagonal cou-
pling matrix element Hnk �n�k� is related to the exchange
interaction ��L ,R ,�� by the relation �13� ��L ,R ,���2Hnk.

The system of coupled equations �49� does not take into
account the electron momentum transfer in reactions �47� as
the diabatic two-center functions �k do not include any ad-
ditional factors describing the electron translational motion
during the collision �22�. As is well known, the effects of
electron translational factors �ETF’s� may significantly affect
the magnitude of the cross section for collision velocities v
!1.0 a.u. �22�.

For inclusion of electron momentum transfer effects in
electron-capture reactions many recipes have been proposed
�see, for example, �29–31� and references therein�. One of
them, proposed in �31� and followed in the present work, is
based on modifications of the electron-exchange interaction
�45�. This modification leads to the concept of the “dynami-
cal” exchange interaction �̃�Q ,v� �31�.

For the calculation of �̃�Q ,v� at L→	 it is necessary to
determine the electron wave function in the region between
the fragments Z+Z and Z1 by taking into account the elec-
tron momentum transfer. In this region, the electron interac-
tion with each of the ion fragments can be considered as
Coulombic and the Shrödinger equation for the electron
wave function in the field of two fragments, which move
with a relative velocity v, has the form �32�

�−
�rc

2
−

Z1

r1
−

Z�

r
+ Vs ±

i

2
v · � +

v2

8
���Q;rc,v�

= E�Q���Q;rc,v� , �50�

where the vector rc determines the position of the electron
relative to the center of mass of colliding fragments, the sign
ñ in front of the gradient term depends on the location of the
electron between the nucleus Z1 and the two identical nuclei
Z+Z, and the other notation is the same as in Secs. II and III.
Let us introduce the wave functions �1 and �2, which rep-
resent the exact solutions of the Shrödinger equation �50�,
but satisfy different initial conditions at L→	 �31�:

�1 = F1�I�Q;r1� � �I�Q;r1�exp�iv · rc/2� , �51�

�2 = F2�II�Q;r� = �II�Q;r�exp�− iv · rc/2� , �52�

while the earlier introduced wave functions �I and �II sat-
isfy the Shrödinger equation �23� for fixed nuclei. For the
calculation of the dynamical exchange interaction we use the
same expression �22�, but now with the functions �1,2 �31�:

�̃�Q,v� = �
S

dS��1
* � �2 − �2

* � �1� . �53�

Introducing the standard definitions for the tangential v$ and
normal vr components of the relative collision velocity v,
v$=v���2+v2t2�−1/2 and vr=v2t��2+v2t2�−1/2, and represent-
ing the factors F1,2, appearing in Eqs. �51� and �52� in the
form

F1,2 = exp�±
1

2
�iv$�c sin �c + ivr

rc · L

L
�� ,

where �c and �c are the polar radius and azimuthal angles in
the integration plane S, we calculate the surface integral �53�
by the same technique used previously to obtain Eq. �44�:

�̃�Q,v� � �̃�L,R,�,v� = 2
m1
+n1+�2Z−Z1��nZ1
−1−�2

−1� �2Z1�3/2

n2 �Z1

n
�n2+
m1
�Z1

n
+ �2�−
m1
 1

%
exp�−

%L

2
�Z1

n
+ �2� −

1

2
�2nZ

Z1
+

Z1

�2
��

�Ln2+2Z/�2� �n1 + 
m1
�!
n1!n2!�n2 + 
m1
�!�

1/2

�
s=0,1

	

�ds
m2�2Dm1m2

s+
m2
�0,�,0�
1


m1
!
��2s + 2
m2
 + 1��s + 
m1
 + 
m2
�!

2�s + 
m2
 − 
m1
�!
, �54�
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where %=�1+v$
2 / ��2+Z1 /n�2. The obtained asymptotic ex-

pression for �̃�L ,R ,� ,v� takes into account the effects of
electron translational motion within the plane-wave repre-
sentation of ETF’s �see Eqs. �51� and �52��.

In the present close-coupling calculations we shall neglect
any degrees of freedom related to the relative motion of the
nuclei of the molecular ion. In other words, we use the sud-
den approximation, with the molecular internuclear vector R
“frozen” �33�. This approximation treats the ion H2

+ as a
rigid system with a fixed internuclear separation, the value of
which in the present calculations is taken to be the equilib-
rium distance R=2 a.u.

We turn now to the calculations of asymptotic diabatic
PES �Hkk� of H2

++He2+ system, Eqs. �10� and �18�–�20�,
needed for solving the dynamical equations �49�. The elec-
tron energy �0��1s" and the parameter A00

�20� �R=2 a.u.� of
H2

+�1s"�, calculated using the exact numerical wave func-
tions of the eZZ system �1�, have the values �1s"=
−1.102 634 a.u. and A00

�20�=0.2025. The components of polar-
izability tensor of the H2

+ ion in its ground state with regard
to the parallel �0

� �R� and perpendicular �0
��R� orientations of

molecular vector R are given by

�0
�̃ = 2��0�r�
V�̃�r�G̃E0

�r;r�
R�V�̃�r��
�0�r��� ,

where �0�r� is the wave function of the ground

state of H2
+, �̃= � ,�, V��r�= �R /2��
, and V��r�

= �R /2����2−1��1−
2�e±i�. G̃E0
�r ;r� 
R� in the above equa-

tion is the two-center reduced Green’s function �34,35�,
which can be calculated from the partial expansions of two-
center Coulomb Green’s function obtained in �18�. It is more
convenient, however, to use expression �19� for �i

�,��R� cal-
culations. The calculated polarizabilities for the ground and
first three excited states of H2

+ reproduce to within 2%–5%
the results of �34�, obtained by expansion of the two-center
Coulomb Green’s function over Sturmian functions. �We
mention here also the recent calculations of H2

+ polarizabil-
ity �36�.�

In Fig. 2 we show the diabatic PES of He2++H2
+�1s"�

and 2H++He+�nn1n2m� in the states with parabolic quantum

numbers �n ,0 ,n−1,0�, �n=1,2 ,3 ,4�, respectively, calcu-
lated for R=2 a.u. and Z1=2 using formulas �10� and �18�–
�20�.

The behavior of the initial He2++H2
+�1s"� and final

2H++He+�nn1n2m� channel PES suggests that the initial state
is dominantly depopulated by transitions at the avoided
crossings in the region L=2–3 a.u., leading to capture into
the He+ �2010� and �3020� final states. The intersection of the
diabatic PES corresponding to the He2++H2

+�1s"� and
2H++He+ �4030� states takes place at larger distances L
�4.5 a.u. Due to the strong exponential decrease �with in-
creasing L� of exchange coupling matrix elements for excited
states �see Eqs. �45� and �54��, the population of He+ �4030�
final states is not expected to be significant. The diabatic PES
for reactions �47b� and �47c� have a similar behavior as those
in Fig. 2 and we do not present them here.

Now we turn to the calculations of the total and partial
cross sections for reactions �47�. The geometry of the Z1
+eZZ collision is shown in Fig. 3. We introduce the new
coordinate system 	x� ,y� ,z�
, in which the relative velocity
is set parallel to the z� axis and the impact parameter � is
directed along the x� axis. The center of mass of the molecu-
lar ion eZZ is placed at the origin of the Cartesian coordinate

FIG. 2. �Color online� Diabatic
PES of He2++H2

+�1s"� �labeled
by E1s"� and of He+�nn1n2m�
+2H+ states �the later are labeled
by their parabolic quantum num-
bers �1000�, �2010�, �3020�, and
�4030��.

FIG. 3. Geometry of the Z1+eZZ collision.
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system 	x� ,y� ,z�
, and its orientation is specified by the set
of two angles 	�� ,��
 �0
��
2�, 0
��
��.

It is well known �see, for example, �22� and references
therein� that the main contribution to the charge-exchange
cross section at low and intermediate collision velocities
comes from the peripheral �large impact parameter� colli-
sions, allowing the use of straight-line classical trajectories
for a description of the projectile-target relative motion,
L�t�=��2+&2t2. The system of coupled differential equations
�49� is then solved numerically for a given set of fixed
parameters—impact parameter �, velocity &, target internu-
clear separation R, and molecular bond orientation
	�� ,��
—and for the initial conditions


ak�t → − 	�
 = �1k, k = 1,2, . . . ,N . �55�

The probabilities Pk�R ,� ,�� ,��� and partial cross sections
"k�R ,�� ,��� for electron capture into a given Stark state k
are

Pk�R,�,��,��� = 
ak�t → + 	�
2,

"k�R,��,��� =� 2��Pk�R,�,��,���d� . �56�

The sum of the partial cross sections "k�R ,�� ,��� over
the nth Stark manifold is "�n��R ,�� ,���, while the total-
capture cross section for a given molecular ion alignment is
"tot�R ,�� ,���=�k=2

N "k�R ,�� ,���. These cross sections have
to be averaged over the orientations of the H2

+ molecular
axis:

"̄tot�R,��� =
1

2�
�

0

2�

"tot�R,��,���d��, �57�

"̄tot�R� = 1/2�
0

�

sin ��"̄tot�R,���d��, �58�

where "̄tot�R� is the alignment averaged total cross sections
�25�. However, for averaging the total �or partials� cross sec-
tions by using formulas �57� and �58� it is necessary to per-
form calculations for about �102 molecular orientations
�25�, which is a formidable computational effort. We have,
therefore, chosen to compute the orientation-averaged cross
sections by the method proposed and used in �37,38�. For the
considered collision systems, it is necessary to consider at
least three orientations of the H2

+ molecular axis with respect
to the direction of the incoming beam �see Fig. 3�. These
orientations yields a coarse set of grid points for rotational
averaging. The three basic orientations place the molecular
axis along the x�, y�, and z� coordinate axes. We label these
three orientations by I 	��=0, ��=0
, II 	��=0, ��=� /2
,
and III 	��=� /2, ��=� /2
. The rotationally averaged target
property ḡ is then given by �37,38�

ḡ =
1

�
��� − 2�g�I� + �g�II� + g�III��� , �59�

where g�i� is the property of interest at orientation i �i
= I , II , III�. All cross-section results presented in this section

are based on this averaging procedure, unless otherwise
stated explicitly.

For the numerical integration of the coupled equations
�49� it is necessary to determine the dependence of angle �
�see Figs. 1 and 3� on � and v. Using the properties of the
Wigner D functions, one obtains

cos � =
�

L�t��D−1,0
1 ���,��,0�

�2
+

tv
�

D0,0
1 ���,��,0�

−
D+1,0

1 ���,��,0�
�2

� . �60�

The coupled equations �49� were integrated in the interval
corresponding to a projectile-target separation of ±20 a.u.;
i.e., the projectile starts at a distance z0=20 a.u., far from the
target, and the trajectory is followed until the projectile is
20 a.u. far away from the target. The difference between the
result obtained with this separation interval and that obtained
with a separation of ±40 a.u. is negligible. The impact pa-
rameter � range included in the calculations was from
0.2 to 8.0 a.u. This range was divided into two parts. For
close collisions, with � varying from 0.2 to 2.0 a.u., we used
a step of 0.01 a.u., whereas for collisions with � varying
from 2.0 to 8.0 a.u., we used a step of 0.1 a.u. The increase
of the upper limit of � to 10.0 a.u. changes the calculated
cross-section results for less than 0.1%. An overall check of
the accuracy of the applied numerical procedure is obtained
from the unitarity condition for �Pk�R ,� ,�� ,���, which was
satisfied within the 10−8–10−9 accuracy level for any of the
velocity values and orientation angles considered.

The orientation-averaged total cross section "̄tot �R
=2 a.u.� of reaction �47a�, obtained by the numerical integra-
tion coupled equations �49�, is shown in Fig. 4�a�. The cou-
pling matrix elements Hjk used in these calculations were
calculated using Eq. �54�, which takes into account the ef-
fects of electron translation factors. The agreement of the
calculated cross section with experimental data of Ref. �23�
can be considered quite satisfactory. In the same figure we
show also the results of theoretical calculations performed in

FIG. 4. The total cross sections for the charge exchange reac-
tions �47�. �a� Reaction �47a�: experimental data �symbols� �23�.
Solid line "̄tot: present calculations. Dotted lines �1� and �2�: theo-
retical results of Ref. �25�. �b� Present total cross sections for reac-
tions �47b� and �47c�.
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Ref. �25� within the framework of a many-body classical
approach �the Kirschbaum-Wilets-Cohen model� introduced
in �39� �line 1� and by using the nonperturbative semiclassi-
cal coupled-channel approach �line 2� employing the rovibra-
tional sudden approximation. �In this approximation, the tar-
get molecular states are determined for fixed positions of the
nuclei, while the electronic wave function is presented as a
linear combination of traveling atomic capture states.�

In Fig. 4�b� we present also the results of the present
calculations for the total capture cross sections of reactions
�47b� and �47c�. To the best of our knowledge no experimen-
tal data are presently available for these reactions.

In a number of recent publications �24–28� considerable
attention has been given to the dependence of the total-
capture cross section of reactions of type �47� on the value of
the H2

+ internuclear distance. The change of R is related to
the molecular ion vibrations. We have performed such calcu-
lations for reaction �47a� by using the method described in
the previous sections for a number of different values of R
between R=1 a.u. and R=3 a.u. The results of these calcu-
lations are shown in Fig. 5. It is observed that with increas-
ing R, the total cross section increases considerably, particu-
larly for collision velocities around 1 a.u. This indicates that

in more accurate cross-section calculations one should per-
form an additional averaging over the initial distribution of
internuclear separations of H2

+ �for example, employing a
Frank-Condon weighting procedure, as used in �25��.

The partial cross sections "̄�n� �R=2 a.u.� for elec-
tron capture to final states with principal quantum numbers
n=1,2 ,3 ,4 are shown in Fig. 6. It can be seen that for col-
lision velocities &!0.5 a.u., the dominant contribution
��60% � to the total cross section "̄tot gives the capture
channel He+ �n=2�. The same conclusion was reached also
in the calculations of Refs. �23,25�. At lower velocities, the
capture to He+ �n=2� decreases significantly, and the capture
to He+ �n=3� becomes dominant. It should be noted, how-
ever, that in this velocity region our partial cross sections
significantly disagree with those of Ref. �25�.

The total cross section of reaction �47a� for the specific
molecular orientations I, II, and III are shown in Fig. 7. The
calculations show a significant dependence of the total cross
section on the molecular orientation; therefore, we provide a
more detailed study of this orientation effect. In Fig. 8, we
show the cross section "̄tot�R ,��� for the collision H2

+

+He2+ with averaging using the formula �57�. For this aver-
aging procedure we performed calculations for 40 different
values of the angle �� at each of 10 values of angle �� �with
totally 400 unique bond orientations for a given velocity v�.

FIG. 5. The total orientation-averaged capture cross sections
"̄tot�R� of reaction �47a� calculated for different H2

+ internuclear
distances R.

FIG. 6. The orientation-averaged partial cross sections "̄�n�
�R=2 a.u.� for electron-capture reaction �47a� to states He+�n� with
n=1,2 ,3 ,4. The dashed line is the capture cross sections to states
with n=3.

FIG. 7. The total cross sections "tot�R ,�� ,����"tot
�i� for

electron-capture reaction �47a� for the three molecular bond orien-
tations i= I , II , III.

FIG. 8. �Color online� The total cross section "̄tot�R ,��� of re-
action �47a� as a function of collision velocity and orientation angle
�� when the internuclear separation H2

+ is 2 a.u.
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We plot "̄tot�R ,��� versus 1/v values to emphasize the
oscillation of the total cross section at low velocities,
which is very pronounced at ���0 but almost disappears at
���� /2.

The obtained results regarding the alignment effects in
H2

++He2+ collisions are in qualitative agreement with the
experimental finding of Ref. �24� and the calculations of
Refs. �25–27�. It appears that electron capture is favored
when the molecular axis of the H2

+ ion is perpendicular to
the projectile velocity vector. The oscillation in total cross
sections at low collision velocities was found also in the
numerical integration of the time-dependent Schrödinger
equation �26�.

In Fig. 9 we show the electron-capture probabilities for
reaction �47a� as a function of impact parameter for a num-
ber of collision velocities. It follows from this figure that the
most important contribution to the capture cross section

comes from the region of ��1–4 a.u. The quantity P̄����
exhibits rapid oscillations at small impact parameter values
and a sharp exponential decrease at high �, a behavior typical
for all electron-capture reactions.

V. CONCLUSIONS

In the present article we have presented the results of an
asymptotic study of the three-Coulomb-center problem
eZ1ZZ. We have obtained analytic results for the electron-
exchange interaction between eZZ and Z1 fragments of this
system, as well as for its diabatic potential-energy surfaces.
We have applied the obtained results in a close-coupling cal-
culation of total and partial electron-capture cross sections in
the Z1+H2

+ �Z1=2 ,3 ,4� collision systems and obtained a
satisfactory agreement of the total cross section with avail-
able experimental data. For collision velocities v!0.5 a.u.
the electron capture dominantly populates the n=2 level of
the product He+ ion, whereas for the lower velocities the n
=3 level is dominantly populated. We have also investigated
the total cross-section dependence on the orientation of the
H2

+ molecular axis and found that the collisions with projec-
tile velocity perpendicular to the molecular axis of H2

+ give
the largest contribution to the cross section.

APPENDIX

We shall calculate here the corrections to the energy com-
ing from the terms proportional to R2,3

−3 . At large distances
between the fragments Z+Z and Z1, the interaction potential
V�r1� �see Eq. �3�� can be considered as a small perturbation
to the Hamiltonian H1

�0� which describes the motion of the
electron in the field of nucleus Z1. This justifies the applica-
tion of the perturbation theory for the calculation of the
higher correction to the H1

�0� energy terms and wave func-
tions. Since the discrete n levels of a hydrogenlike ion are
degenerate �with an degeneracy order of n2�, it is necessary
to construct the correct wave functions of the zeroth-order
approximation in the form �6�, with coefficients determined
from Eq. �9�.

Substituting the energy terms �10� into Eq. �9�, we find
from its solution the expansion coefficients an1n2m and, thus,
the correct expression for zeroth-order wave functions. For
the states with n=2, for instance, one obtains �4�

#1
�0� =�1

2
��001 + �00−1� ,

#2
�0� =

1
�2�A2 + B2�

�A��001 − �00−1� − iB��100 − �010�� ,

#3,4
�0� =

1

2��A2 + B2�
��A � �A2 + B2��100

− �A ± �A2 + B2��010 − iB��001 − �00−1�� . �A1�

To calculate the corrections for the energy terms propor-
tional to R2,3

−3 it is necessary to take into account the corre-
sponding higher-order term w in the expansion of the inter-
action potential �3�. It is convenient to represent w in
parabolic coordinates �see Eqs. �6�–�8��:

w = −
C

8
��2 − 4�� + �2� +

3D

2
����� − ��sin �1

+
3E

4
�� cos 2�1, �A2�

where

A =
cos �2

R2
2 +

cos �3

R3
2 , B =

sin �2

R2
2 −

sin �3

R3
2 ,

C =
3 cos2 �2 − 1

R2
3 +

3 cos2 �3 − 1

R3
3 ,

D =
cos �2 sin �2

R2
3 −

cos �3 sin �3

R3
3 , E =

sin2 �2

R2
2 +

sin2 �3

R3
2 .

�A3�

By direct calculations one can show that the nondiagonal
matrix element of the operator �A2� with the wave functions
�A1� is zero. It is therefore sufficient to average this operator
over the wave functions �A1� to obtain the corrections to
the energy to terms proportional to R2,3

−3 . Performing the
necessary integration, one obtains, for the energy terms with
n=2,

FIG. 9. Orientation-averaged probabilities P̄��� for electron cap-
ture �47a� times the impact parameter �, as functions of � �in a.u.�,
for collision velocities v=0.4, 0.6, 0.8, 1.0, and 1.2 a.u.
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E1 = −
Z1

2

8
−

Z

R2
−

Z

R3
+

6Z

Z1
2 � 1

R2
3 +

1

R3
3� ,

E2 = −
Z1

2

8
−

Z

R2
−

Z

R3
+

6Z

Z1
2�R2

−4 + R3
−4 + 2R2

−2R3
−2 cos �̃�� 1

R2
7 +

1

R3
7 +

2 cos �̃

�R2R3�2� 1

R2
3 +

1

R3
3� +

1 − 3 sin2 �̃

�R2R3�3 � 1

R2
+

1

R3
�� ,

E3,4 = −
Z1

2

8
−

Z

R2
−

Z

R3
±

3Z

Z1
� 1

R2
4 +

1

R3
4 +

2 cos �̃

R2
2R3

2 −
6Z

Z1
2�R2

−4 + R3
−4 + 2R2

−2R3
−2 cos �̃�

�� 1

R2
7 +

1

R3
7 +

2 cos �̃

�R2R3�2� 1

R2
3 +

1

R3
3� −

1 − 3 cos2 �̃

2�R2R3�3 � 1

R2
+

1

R3
�� . �A4�

Using the same technique, one can determine the correct zeroth-order approximation for the wave functions of the states
with n=3:

#1,3 =
B

2�2�A2 + B2�
�− B

�2
��002 + �00−2� + i�A ± �A2 + B2���011 − �01−1� ± i��A + �A2 + B2���101 − �10−1�

+ �2B�110 ±
B�− A ± �A2 + B2�
�2�±A + �A2 + B2�

�200 �
B�A ± �A2 + B2�

�2�A � �A2 + B2�
�020� ,

#2 =
1

�A2 + B2�− A��002 − �00−2�
�2

−
iB

2
��011 + �01−1 − �101 − �10−1�� ,

#4,6 =
1

2�2�A2 + B2�
���±A + �A2 + B2���011 + �01−1� + �A � �A2 + B2���101 + �10−1� � i�2B��002 − �00−2�� ,

#5,7 =
1

2�2�A2 + B2�
��i�2AB��002 + �00−2 − 2�110� + i�2B��A + �A2 + B2��200 − i�2B�±A + �A2 + B2��020

+ ��A2 ± B2 + A�A2 + B2���10−1 − �101� + �±A2 � B2 + A�A2 + B2���01−1 − �011�� ,

#8 =
1

�4A4 + 4A2B2 + 3B4
�i�2AB��011 − �01−1 − �101 + �10−1� − �2A2 − B2��110 − B2��200 + �020�� ,

#9 =
1
�3

��110 + �002 + �00−2� . �A5�

The higher-order corrections to the energies can also be
obtained by the same technique. For the sake of brevity, we
present here only the results for the energies of " states
�n1 ,n2 ,m=0�:

E�200� = −
Z1

2

18
−

Z

R2
−

Z

R3
+

9Z

Z1
� 1

R2
4 +

1

R3
4 +

2 cos �̃

R2
2R3

2 − �E ,

E�020� = −
Z1

2

18
−

Z

R2
−

Z

R3
−

9Z

Z1
� 1

R2
4 +

1

R3
4 +

2 cos �̃

R2
2R3

2 + �E ,

E�110� = −
Z1

2

18
−

Z

R2
−

Z

R3
+
�E

2
, �A6�

where �E is given by

�E =
72Z

Z1
2�R2

−4 + R3
−4 + 2R2

−2R3
−2 cos �̃�

�� 1

R2
7 +

1

R3
7 +

1

2�R2R3�3�� 1

R2
+

1

R3
��3 cos2�̃ − 1�

+ 4�R3

R2
2 +

R2

R3
2�cos �̃�� .

In the case of the isosceles triangle configuration �R2=R3,
�2=�3= �̃ /2�, formulas �A6� reproduce the corresponding
results of �4�.
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