000057679 001__ 57679
000057679 005__ 20240610121151.0
000057679 0247_ $$2DOI$$a10.1103/PhysRevLett.96.076101
000057679 0247_ $$2WOS$$aWOS:000235554100051
000057679 0247_ $$2Handle$$a2128/7711
000057679 037__ $$aPreJuSER-57679
000057679 041__ $$aeng
000057679 082__ $$a550
000057679 084__ $$2WoS$$aPhysics, Multidisciplinary
000057679 1001_ $$0P:(DE-Juel1)VDB69642$$aLandrock, S.$$b0$$uFZJ
000057679 245__ $$aSpontaneous 2D Accumulation of Charged Be Dopants in GaAs p-n Superlattices
000057679 260__ $$aCollege Park, Md.$$bAPS$$c2006
000057679 300__ $$a076101
000057679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057679 3367_ $$2DataCite$$aOutput Types/Journal article
000057679 3367_ $$00$$2EndNote$$aJournal Article
000057679 3367_ $$2BibTeX$$aARTICLE
000057679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057679 3367_ $$2DRIVER$$aarticle
000057679 440_0 $$04925$$aPhysical Review Letters$$v96$$x0031-9007
000057679 500__ $$aRecord converted from VDB: 12.11.2012
000057679 520__ $$aIn a classical view, abrupt dopant profiles in semiconductors tend to be smoothed out by diffusion due to concentration gradients and repulsive screened Coulomb interactions between the charged dopants. We demonstrate, however, using cross-sectional scanning tunneling microscopy and secondary ion mass spectroscopy, that charged Be dopant atoms in GaAs p-n superlattices spontaneously accumulate and form two-dimensional dopant layers. These are stabilized by reduced repulsive screened Coulomb interactions between the charged dopants arising from the two-dimensional quantum mechanical confinement of charge carriers.
000057679 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000057679 536__ $$0G:(DE-Juel1)FUEK414$$aKondensierte Materie$$cP54$$x1
000057679 588__ $$aDataset connected to Web of Science
000057679 650_7 $$2WoSType$$aJ
000057679 7001_ $$0P:(DE-Juel1)VDB4950$$aUrban, K.$$b1$$uFZJ
000057679 7001_ $$0P:(DE-Juel1)VDB18197$$aEbert, Ph.$$b2$$uFZJ
000057679 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.96.076101$$gVol. 96, p. 076101$$p076101$$q96<076101$$tPhysical review letters$$v96$$x0031-9007$$y2006
000057679 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevLett.96.076101
000057679 8564_ $$uhttps://juser.fz-juelich.de/record/57679/files/FZJ-57679.pdf$$yOpenAccess$$zPublished final document.
000057679 8564_ $$uhttps://juser.fz-juelich.de/record/57679/files/FZJ-57679.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000057679 8564_ $$uhttps://juser.fz-juelich.de/record/57679/files/FZJ-57679.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000057679 8564_ $$uhttps://juser.fz-juelich.de/record/57679/files/FZJ-57679.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000057679 909CO $$ooai:juser.fz-juelich.de:57679$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000057679 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000057679 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x1$$zentfällt   bis 2009
000057679 9141_ $$aNachtrag$$y2006
000057679 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057679 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057679 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000057679 9201_ $$0I:(DE-Juel1)VDB37$$d31.12.2006$$gIFF$$kIFF-IMF$$lMikrostrukturforschung$$x0
000057679 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000057679 970__ $$aVDB:(DE-Juel1)90717
000057679 9801_ $$aFullTexts
000057679 980__ $$aVDB
000057679 980__ $$aConvertedRecord
000057679 980__ $$ajournal
000057679 980__ $$aI:(DE-Juel1)PGI-5-20110106
000057679 980__ $$aI:(DE-82)080009_20140620
000057679 980__ $$aUNRESTRICTED
000057679 980__ $$aFullTexts
000057679 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000057679 981__ $$aI:(DE-Juel1)PGI-5-20110106
000057679 981__ $$aI:(DE-Juel1)VDB881