000057796 001__ 57796
000057796 005__ 20240712100958.0
000057796 0247_ $$2DOI$$a10.1029/2006JD007100
000057796 0247_ $$2WOS$$aWOS:000241297400004
000057796 0247_ $$2ISSN$$a0141-8637
000057796 0247_ $$2Handle$$a2128/20418
000057796 0247_ $$2altmetric$$aaltmetric:5057934
000057796 037__ $$aPreJuSER-57796
000057796 041__ $$aeng
000057796 082__ $$a550
000057796 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000057796 1001_ $$0P:(DE-HGF)0$$aShindell, D. T.$$b0
000057796 245__ $$aMultimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes
000057796 260__ $$aWashington, DC$$bUnion$$c2006
000057796 300__ $$aD19306
000057796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057796 3367_ $$2DataCite$$aOutput Types/Journal article
000057796 3367_ $$00$$2EndNote$$aJournal Article
000057796 3367_ $$2BibTeX$$aARTICLE
000057796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057796 3367_ $$2DRIVER$$aarticle
000057796 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v111$$x0148-0227
000057796 500__ $$aRecord converted from VDB: 12.11.2012
000057796 520__ $$aWe analyze present-day and future carbon monoxide (CO) simulations in 26 state-of-the-art atmospheric chemistry models run to study future air quality and climate change. In comparison with near-global satellite observations from the MOPITT instrument and local surface measurements, the models show large underestimates of Northern Hemisphere (NH) extratropical CO, while typically performing reasonably well elsewhere. The results suggest that year-round emissions, probably from fossil fuel burning in east Asia and seasonal biomass burning emissions in south-central Africa, are greatly underestimated in current inventories such as IIASA and EDGAR3.2. Variability among models is large, likely resulting primarily from intermodel differences in representations and emissions of nonmethane volatile organic compounds (NMVOCs) and in hydrologic cycles, which affect OH and soluble hydrocarbon intermediates. Global mean projections of the 2030 CO response to emissions changes are quite robust. Global mean midtropospheric (500 hPa) CO increases by 12.6 +/- 3.5 ppbv (16%) for the high-emissions (A2) scenario, by 1.7 +/- 1.8 ppbv (2%) for the midrange (CLE) scenario, and decreases by 8.1 +/- 2.3 ppbv (11%) for the low-emissions (MFR) scenario. Projected 2030 climate changes decrease global 500 hPa CO by 1.4 +/- 1.4 ppbv. Local changes can be much larger. In response to climate change, substantial effects are seen in the tropics, but intermodel variability is quite large. The regional CO responses to emissions changes are robust across models, however. These range from decreases of 10-20 ppbv over much of the industrialized NH for the CLE scenario to CO increases worldwide and year-round under A2, with the largest changes over central Africa (20-30 ppbv), southern Brazil (20-35 ppbv) and south and east Asia (30-70 ppbv). The trajectory of future emissions thus has the potential to profoundly affect air quality over most of the world's populated areas.
000057796 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000057796 588__ $$aDataset connected to Web of Science
000057796 650_7 $$2WoSType$$aJ
000057796 7001_ $$0P:(DE-HGF)0$$aFaluvegi, G.$$b1
000057796 7001_ $$0P:(DE-HGF)0$$aStevenson, D. S.$$b2
000057796 7001_ $$0P:(DE-HGF)0$$aKrol, M. C.$$b3
000057796 7001_ $$0P:(DE-HGF)0$$aEmmons, L. K.$$b4
000057796 7001_ $$0P:(DE-HGF)0$$aLamarque, J.-F.$$b5
000057796 7001_ $$0P:(DE-HGF)0$$aPétron, G.$$b6
000057796 7001_ $$0P:(DE-HGF)0$$aDentener, F. J.$$b7
000057796 7001_ $$0P:(DE-HGF)0$$aEllingsen, K.$$b8
000057796 7001_ $$0P:(DE-Juel1)6952$$aSchultz, M. G.$$b9$$uFZJ
000057796 7001_ $$0P:(DE-HGF)0$$aWild, O.$$b10
000057796 7001_ $$0P:(DE-HGF)0$$aAmann, M.$$b11
000057796 7001_ $$0P:(DE-HGF)0$$aAtherton, C. S.$$b12
000057796 7001_ $$0P:(DE-HGF)0$$aBergmann, D. J.$$b13
000057796 7001_ $$0P:(DE-HGF)0$$aBey, I.$$b14
000057796 7001_ $$0P:(DE-HGF)0$$aButler, T.$$b15
000057796 7001_ $$0P:(DE-HGF)0$$aCofala, J.$$b16
000057796 7001_ $$0P:(DE-HGF)0$$aCollins, W. J.$$b17
000057796 7001_ $$0P:(DE-HGF)0$$aDerwent, R. G.$$b18
000057796 7001_ $$0P:(DE-HGF)0$$aDoherty, R. M.$$b19
000057796 7001_ $$0P:(DE-HGF)0$$aDrevet, J.$$b20
000057796 7001_ $$0P:(DE-HGF)0$$aEskes, H.J.$$b21
000057796 7001_ $$0P:(DE-HGF)0$$aFiore, A. M.$$b22
000057796 7001_ $$0P:(DE-HGF)0$$aGauss, M.$$b23
000057796 7001_ $$0P:(DE-HGF)0$$aHauglustaine, D. A.$$b24
000057796 7001_ $$0P:(DE-HGF)0$$aHorowitz, L. W.$$b25
000057796 7001_ $$0P:(DE-HGF)0$$aIsaksen, I. S. A.$$b26
000057796 7001_ $$0P:(DE-HGF)0$$aLawrence, M. G.$$b27
000057796 7001_ $$0P:(DE-HGF)0$$aMontanaro, V.$$b28
000057796 7001_ $$0P:(DE-HGF)0$$aMüller, J.-F.$$b29
000057796 7001_ $$0P:(DE-HGF)0$$aPitari, G.$$b30
000057796 7001_ $$0P:(DE-HGF)0$$aPrather, M. J.$$b31
000057796 7001_ $$0P:(DE-HGF)0$$aPyle, J. A.$$b32
000057796 7001_ $$0P:(DE-HGF)0$$aRast, S.$$b33
000057796 7001_ $$0P:(DE-HGF)0$$aRodriguez, J. M.$$b34
000057796 7001_ $$0P:(DE-HGF)0$$aSanderson, M. G.$$b35
000057796 7001_ $$0P:(DE-HGF)0$$aSavage, N. H.$$b36
000057796 7001_ $$0P:(DE-HGF)0$$aStrahan, S.E.$$b37
000057796 7001_ $$0P:(DE-HGF)0$$aSudo, K.$$b38
000057796 7001_ $$0P:(DE-HGF)0$$aSzopa, S.$$b39
000057796 7001_ $$0P:(DE-HGF)0$$aUnger, N.$$b40
000057796 7001_ $$0P:(DE-HGF)0$$avan Noije, T. P. C.$$b41
000057796 7001_ $$0P:(DE-HGF)0$$aZeng, G.$$b42
000057796 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2006JD007100$$gVol. 111, p. D19306$$pD19306$$q111<D19306$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v111$$x0148-0227$$y2006
000057796 8567_ $$uhttp://dx.doi.org/10.1029/2006JD007100
000057796 8564_ $$uhttps://juser.fz-juelich.de/record/57796/files/2006JD007100.pdf$$yOpenAccess
000057796 8564_ $$uhttps://juser.fz-juelich.de/record/57796/files/2006JD007100.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000057796 909CO $$ooai:juser.fz-juelich.de:57796$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000057796 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000057796 9141_ $$aNachtrag$$y2006
000057796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000057796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000057796 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000057796 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057796 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000057796 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000057796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000057796 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000057796 970__ $$aVDB:(DE-Juel1)90900
000057796 9801_ $$aFullTexts
000057796 980__ $$aVDB
000057796 980__ $$aConvertedRecord
000057796 980__ $$ajournal
000057796 980__ $$aI:(DE-Juel1)IEK-8-20101013
000057796 980__ $$aUNRESTRICTED
000057796 981__ $$aI:(DE-Juel1)ICE-3-20101013
000057796 981__ $$aI:(DE-Juel1)IEK-8-20101013