000057797 001__ 57797
000057797 005__ 20240712100958.0
000057797 0247_ $$2DOI$$a10.1029/2005GB002672
000057797 0247_ $$2WOS$$aWOS:000241700200001
000057797 0247_ $$2Handle$$a2128/20714
000057797 0247_ $$2altmetric$$aaltmetric:2627353
000057797 037__ $$aPreJuSER-57797
000057797 041__ $$aeng
000057797 082__ $$a550
000057797 084__ $$2WoS$$aEnvironmental Sciences
000057797 084__ $$2WoS$$aGeosciences, Multidisciplinary
000057797 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000057797 1001_ $$0P:(DE-HGF)0$$aDentener, F.$$b0
000057797 245__ $$aNitrogen and sulfur deposition on regional and global scales: A multimodel evaluation
000057797 260__ $$aWashington, DC$$bAGU$$c2006
000057797 300__ $$aGB4003
000057797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057797 3367_ $$2DataCite$$aOutput Types/Journal article
000057797 3367_ $$00$$2EndNote$$aJournal Article
000057797 3367_ $$2BibTeX$$aARTICLE
000057797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057797 3367_ $$2DRIVER$$aarticle
000057797 440_0 $$018183$$aGlobal Biochemical Cycles$$v20$$y4
000057797 500__ $$aRecord converted from VDB: 12.11.2012
000057797 520__ $$a[1] We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NOy, NHx) and sulfate (SOx) to land and ocean surfaces. The models are driven by three emission scenarios: ( 1) current air quality legislation (CLE); ( 2) an optimistic case of the maximum emissions reductions currently technologically feasible ( MFR); and ( 3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present-day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60 - 70% of the model-calculated wet deposition rates agree to within +/- 50% with quality-controlled measurements. Models systematically overestimate NHx deposition in South Asia, and underestimate NOy deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NOy, NHx, and SOx, leading to +/- 1 sigma variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36 - 51% of all NOy, NHx, and SOx is deposited over the ocean, and 50 - 80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the world's natural vegetation receives nitrogen deposition in excess of the "critical load'' threshold of 1000 mg(N) m(-2) yr(-1). The regions most affected are the United States (20% of vegetation), western Europe ( 30%), eastern Europe ( 80%), South Asia (60%), East Asia 40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m(-2) yr(-1) increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NOy are offset by further increases for NHx deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.
000057797 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000057797 588__ $$aDataset connected to Web of Science
000057797 650_7 $$2WoSType$$aJ
000057797 7001_ $$0P:(DE-HGF)0$$aDrevet, J.$$b1
000057797 7001_ $$0P:(DE-HGF)0$$aLamarque, J. F.$$b2
000057797 7001_ $$0P:(DE-HGF)0$$aBey, I.$$b3
000057797 7001_ $$0P:(DE-HGF)0$$aEickhout, B.$$b4
000057797 7001_ $$0P:(DE-HGF)0$$aFiore, A. M.$$b5
000057797 7001_ $$0P:(DE-HGF)0$$aHauglustaine, D.$$b6
000057797 7001_ $$0P:(DE-HGF)0$$aHorowitz, L. W.$$b7
000057797 7001_ $$0P:(DE-HGF)0$$aKrol, M.$$b8
000057797 7001_ $$0P:(DE-HGF)0$$aKulshrestha, U.C.$$b9
000057797 7001_ $$0P:(DE-HGF)0$$aLawrence, M.$$b10
000057797 7001_ $$0P:(DE-HGF)0$$aGaly-Lacaux, C.$$b11
000057797 7001_ $$0P:(DE-HGF)0$$aRast, S.$$b12
000057797 7001_ $$0P:(DE-HGF)0$$aShindell, D.$$b13
000057797 7001_ $$0P:(DE-HGF)0$$aStevenson, D.$$b14
000057797 7001_ $$0P:(DE-HGF)0$$aVan Noije, T.$$b15
000057797 7001_ $$0P:(DE-HGF)0$$aAtherton, C.$$b16
000057797 7001_ $$0P:(DE-HGF)0$$aBell, N.$$b17
000057797 7001_ $$0P:(DE-HGF)0$$aBergmann, D.$$b18
000057797 7001_ $$0P:(DE-HGF)0$$aButler, T.$$b19
000057797 7001_ $$0P:(DE-HGF)0$$aCofala, J.$$b20
000057797 7001_ $$0P:(DE-HGF)0$$aCollins, B.$$b21
000057797 7001_ $$0P:(DE-HGF)0$$aDoherty, R.$$b22
000057797 7001_ $$0P:(DE-HGF)0$$aEllingsen, K.$$b23
000057797 7001_ $$0P:(DE-HGF)0$$aGalloway, J.$$b24
000057797 7001_ $$0P:(DE-HGF)0$$aGauss, M.$$b25
000057797 7001_ $$0P:(DE-HGF)0$$aMontanaro, V.$$b26
000057797 7001_ $$0P:(DE-HGF)0$$aMüller, J. F.$$b27
000057797 7001_ $$0P:(DE-HGF)0$$aPitari, G.$$b28
000057797 7001_ $$0P:(DE-HGF)0$$aRodriguez, J.$$b29
000057797 7001_ $$0P:(DE-HGF)0$$aSanderson, M.$$b30
000057797 7001_ $$0P:(DE-HGF)0$$aSolmon, F.$$b31
000057797 7001_ $$0P:(DE-HGF)0$$aStrahan, S.$$b32
000057797 7001_ $$0P:(DE-Juel1)6952$$aSchultz, M.$$b33$$uFZJ
000057797 7001_ $$0P:(DE-HGF)0$$aSudo, K.$$b34
000057797 7001_ $$0P:(DE-HGF)0$$aSzopa, S.$$b35
000057797 7001_ $$0P:(DE-HGF)0$$aWild, O.$$b36
000057797 773__ $$0PERI:(DE-600)2021601-4$$a10.1029/2005GB002672$$gVol. 20, p. GB4003$$pGB4003$$q20<GB4003$$tGlobal biogeochemical cycles$$v20$$x0886-6236$$y2006
000057797 8567_ $$uhttp://dx.doi.org/10.1029/2005GB002672
000057797 8564_ $$uhttps://juser.fz-juelich.de/record/57797/files/2005GB002672.pdf$$yOpenAccess
000057797 8564_ $$uhttps://juser.fz-juelich.de/record/57797/files/2005GB002672.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000057797 909CO $$ooai:juser.fz-juelich.de:57797$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000057797 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000057797 9141_ $$aNachtrag$$y2006
000057797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000057797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000057797 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000057797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057797 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000057797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000057797 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000057797 970__ $$aVDB:(DE-Juel1)90901
000057797 9801_ $$aFullTexts
000057797 980__ $$aVDB
000057797 980__ $$aConvertedRecord
000057797 980__ $$ajournal
000057797 980__ $$aI:(DE-Juel1)IEK-8-20101013
000057797 980__ $$aUNRESTRICTED
000057797 981__ $$aI:(DE-Juel1)ICE-3-20101013
000057797 981__ $$aI:(DE-Juel1)IEK-8-20101013