000057828 001__ 57828
000057828 005__ 20240712100846.0
000057828 0247_ $$2DOI$$a10.1029/2006JD008315
000057828 0247_ $$2WOS$$aWOS:000251691000003
000057828 0247_ $$2ISSN$$a0141-8637
000057828 0247_ $$2Handle$$a2128/20415
000057828 037__ $$aPreJuSER-57828
000057828 041__ $$aeng
000057828 082__ $$a550
000057828 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000057828 1001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b0$$uFZJ
000057828 245__ $$aImpact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex
000057828 260__ $$aWashington, DC$$bUnion$$c2007
000057828 300__ $$aD23307
000057828 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057828 3367_ $$2DataCite$$aOutput Types/Journal article
000057828 3367_ $$00$$2EndNote$$aJournal Article
000057828 3367_ $$2BibTeX$$aARTICLE
000057828 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057828 3367_ $$2DRIVER$$aarticle
000057828 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v112$$x0148-0227
000057828 500__ $$aRecord converted from VDB: 12.11.2012
000057828 520__ $$a[1] Ozone-tracer relations are used to quantify chemical ozone loss in the polar vortices. The underlying assumptions for the application of this technique were extensively discussed in recent years. However, the impact intrusions of mesospheric air into the polar stratosphere have on estimates of chemical ozone loss based on the ozone-tracer technique has not hitherto been studied. Here, we revisit observations of an intrusion of mesospheric air down to altitudes of similar to 25 km (similar to 600 K potential temperature) in the Arctic vortex in 2003. The mesospheric intrusion was identified in three balloon profiles in January and March 2003 as a strong enhancement in CO. In contrast, NOy was not enhanced in the mesospheric air relative to surrounding air masses as shown by the measurement in late March 2003. The measurements influenced by mesospheric air show ozone mixing ratios ranging between 3.6 and 5.6 ppm, which are clearly greater than those found in the "early vortex" reference relation employed to deduce chemical ozone loss. Thus the impact of intrusions of mesospheric air into the polar vortex on chemical ozone loss estimates based on ozone-tracer relations are likely small; the correlations cannot be affected in a way that would lead to an overestimate of ozone depletion. Therefore ozone-tracer relations may be used for deducing chemical ozone loss in Arctic winter 2002-2003. Here we use ILAS-II satellite measurements to deduce an average chemical ozone loss in the vortex core for the partial column 380-550 K of 37 +/- 11 Dobson units in March and of 50 +/- 10 Dobson units in April 2003.
000057828 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000057828 588__ $$aDataset connected to Web of Science
000057828 650_7 $$2WoSType$$aJ
000057828 7001_ $$0P:(DE-HGF)0$$aTilmes, S.$$b1
000057828 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b2$$uFZJ
000057828 7001_ $$0P:(DE-HGF)0$$aEngel, A.$$b3
000057828 7001_ $$0P:(DE-HGF)0$$aOelhaf, H.$$b4
000057828 7001_ $$0P:(DE-Juel1)VDB28522$$aWetzel, G.$$b5$$uFZJ
000057828 7001_ $$0P:(DE-HGF)0$$aHuret, N.$$b6
000057828 7001_ $$0P:(DE-HGF)0$$aPirre, M.$$b7
000057828 7001_ $$0P:(DE-HGF)0$$aCatoire, V.$$b8
000057828 7001_ $$0P:(DE-HGF)0$$aToon, G.$$b9
000057828 7001_ $$0P:(DE-HGF)0$$aNakajima, H.$$b10
000057828 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2006JD008315$$gVol. 112, p. D23307$$pD23307$$q112<D23307$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v112$$x0148-0227$$y2007
000057828 8567_ $$uhttp://dx.doi.org/10.1029/2006JD008315
000057828 8564_ $$uhttps://juser.fz-juelich.de/record/57828/files/2006JD008315.pdf$$yOpenAccess
000057828 8564_ $$uhttps://juser.fz-juelich.de/record/57828/files/2006JD008315.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000057828 909CO $$ooai:juser.fz-juelich.de:57828$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000057828 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000057828 9141_ $$y2007
000057828 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000057828 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000057828 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000057828 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057828 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000057828 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000057828 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000057828 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000057828 970__ $$aVDB:(DE-Juel1)90951
000057828 9801_ $$aFullTexts
000057828 980__ $$aVDB
000057828 980__ $$aConvertedRecord
000057828 980__ $$ajournal
000057828 980__ $$aI:(DE-Juel1)IEK-7-20101013
000057828 980__ $$aUNRESTRICTED
000057828 981__ $$aI:(DE-Juel1)ICE-4-20101013
000057828 981__ $$aI:(DE-Juel1)IEK-7-20101013