000057841 001__ 57841
000057841 005__ 20240708133523.0
000057841 0247_ $$2DOI$$a10.1016/j.fusengdes.2005.07.017
000057841 0247_ $$2WOS$$aWOS:000235599500029
000057841 037__ $$aPreJuSER-57841
000057841 041__ $$aeng
000057841 082__ $$a620
000057841 084__ $$2WoS$$aNuclear Science & Technology
000057841 1001_ $$0P:(DE-HGF)0$$aLipa, M.$$b0
000057841 245__ $$aAnalyses of metallic first mirror samples after long term plasma exposure in Tore Supra
000057841 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2006
000057841 300__ $$a
000057841 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057841 3367_ $$2DataCite$$aOutput Types/Journal article
000057841 3367_ $$00$$2EndNote$$aJournal Article
000057841 3367_ $$2BibTeX$$aARTICLE
000057841 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057841 3367_ $$2DRIVER$$aarticle
000057841 440_0 $$02169$$aFusion Engineering and Design$$v81$$x0920-3796$$y1
000057841 500__ $$aRecord converted from VDB: 12.11.2012
000057841 520__ $$aMetallic mirrors are foreseen in ITER diagnostic systems as optical elements directly viewing the plasma radiation. In the frame of an EFDA contract, metallic mirror samples have been exposed for long pulse plasma discharges in Tore Supra (TS) in order to investigate surface modifications caused by erosion and re-deposition processes. Three different materials have been selected: mono-crystalline molybdenum (mc-Mo), polycrystalline stainless steel (SS) and copper (Cu). The mc-Mo samples showed after TS exposure almost no surface roughness modifications and the lowest net-erosion. A slight reflectivity reduction, most pronounced in the near UV, is attributed to light absorption in a thin carbon deposit. Cu mirrors showed by far the highest surface roughness, erosion and diffusive reflectivity. Comparative laboratory glow discharge experiments with virgin reference samples and numerical simulations of erosion/deposition confirm the dominant contribution of conditioning procedures to erosion of mirrors exposed (without shutter protection) in Tore Supra. (c) 2005 Elsevier B.V. All rights reserved.
000057841 536__ $$0G:(DE-Juel1)FUEK403$$2G:(DE-HGF)$$aFusion$$cP13$$x0
000057841 588__ $$aDataset connected to Web of Science
000057841 650_7 $$2WoSType$$aJ
000057841 65320 $$2Author$$afirst mirrors
000057841 65320 $$2Author$$amirror erosion and re-deposition
000057841 65320 $$2Author$$aTore Supra mirror exposure
000057841 7001_ $$0P:(DE-HGF)0$$aSchunke, B.$$b1
000057841 7001_ $$0P:(DE-HGF)0$$aGil, Ch.$$b2
000057841 7001_ $$0P:(DE-HGF)0$$aBucalossi, J.$$b3
000057841 7001_ $$0P:(DE-HGF)0$$aVoitsenya, V. S.$$b4
000057841 7001_ $$0P:(DE-HGF)0$$aKonovalov, V.$$b5
000057841 7001_ $$0P:(DE-HGF)0$$aVukolov, K.$$b6
000057841 7001_ $$0P:(DE-HGF)0$$aBalden, M.$$b7
000057841 7001_ $$0P:(DE-HGF)0$$aDe Temmerman, G.$$b8
000057841 7001_ $$0P:(DE-HGF)0$$aOelhafen, P.$$b9
000057841 7001_ $$0P:(DE-Juel1)130090$$aLitnovsky, A.$$b10$$uFZJ
000057841 7001_ $$0P:(DE-Juel1)VDB3190$$aWienhold, P.$$b11$$uFZJ
000057841 773__ $$0PERI:(DE-600)1492280-0$$a10.1016/j.fusengdes.2005.07.017$$gVol. 81$$q81$$tFusion engineering and design$$v81$$x0920-3796$$y2006
000057841 8567_ $$uhttp://dx.doi.org/10.1016/j.fusengdes.2005.07.017
000057841 909CO $$ooai:juser.fz-juelich.de:57841$$pVDB
000057841 9131_ $$0G:(DE-Juel1)FUEK403$$bEnergie$$kP13$$lFusion$$vFusion$$x0
000057841 9141_ $$aNachtrag$$y2006
000057841 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057841 9201_ $$0I:(DE-Juel1)VDB181$$d31.12.2006$$gIPP$$kIPP$$lInstitut für Plasmaphysik$$x1
000057841 970__ $$aVDB:(DE-Juel1)90967
000057841 980__ $$aVDB
000057841 980__ $$aConvertedRecord
000057841 980__ $$ajournal
000057841 980__ $$aI:(DE-Juel1)IEK-4-20101013
000057841 980__ $$aUNRESTRICTED
000057841 981__ $$aI:(DE-Juel1)IFN-1-20101013
000057841 981__ $$aI:(DE-Juel1)IEK-4-20101013