000057845 001__ 57845 000057845 005__ 20240619091623.0 000057845 0247_ $$2DOI$$a10.1016/j.ssc.2005.11.041 000057845 0247_ $$2WOS$$aWOS:000235426400005 000057845 037__ $$aPreJuSER-57845 000057845 041__ $$aeng 000057845 082__ $$a540 000057845 084__ $$2WoS$$aPhysics, Condensed Matter 000057845 1001_ $$0P:(DE-Juel1)VDB787$$aKöbler, U.$$b0$$uFZJ 000057845 245__ $$aOne-dimensional bulk ferromagnets: NdAl2 and hcp cobalt 000057845 260__ $$aNew York, NY [u.a.]$$bElsevier Science$$c2006 000057845 300__ $$a301 - 305 000057845 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000057845 3367_ $$2DataCite$$aOutput Types/Journal article 000057845 3367_ $$00$$2EndNote$$aJournal Article 000057845 3367_ $$2BibTeX$$aARTICLE 000057845 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000057845 3367_ $$2DRIVER$$aarticle 000057845 440_0 $$05564$$aSolid State Communications$$v137$$x0038-1098$$y6 000057845 500__ $$aRecord converted from VDB: 12.11.2012 000057845 520__ $$aIt is shown experimentally that NdAl2 and hcp cobalt are one-dimensional (1D) bulk ferromagnets. For hcp cobalt this is only under the condition that the sample is magnetically saturated, i.e. that all moments are aligned parallel to the hexagonal c-axis. In 1D magnets the transverse interactions need not to be zero but must be sufficiently weak such that the transverse correlation length does not diverge at the critical temperature. The transverse interactions are then not relevant and the phase transition is driven by the longitudinal interactions. On the other hand, magnetic Bragg scattering relies on finite transverse correlations. For NdAl2 no conventional magnetic Bragg scattering is observed if all moments are aligned vertical to the scattering plane by a magnetic field. For hcp cobalt the scattering intensity is considerably reduced in this geometry instead of having its maximum. From this observation it can be concluded that the transverse correlation length is practically zero in NdAl2 but has a finite value in hcp cobalt. The macroscopic magnetization shows normal ferromagnetic saturation. (c) 2005 Elsevier Ltd. All rights reserved. 000057845 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000057845 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1 000057845 588__ $$aDataset connected to Web of Science 000057845 650_7 $$2WoSType$$aJ 000057845 65320 $$2Author$$alow-dimensional systems 000057845 65320 $$2Author$$aferromagnetism 000057845 65320 $$2Author$$aneutron diffraction 000057845 7001_ $$0P:(DE-Juel1)VDB655$$aHoser, A.$$b1$$uFZJ 000057845 7001_ $$0P:(DE-HGF)0$$aHoffmann, J.-U.$$b2 000057845 7001_ $$0P:(DE-Juel1)VDB1640$$aThomas, C.$$b3$$uFZJ 000057845 773__ $$0PERI:(DE-600)1467698-9$$a10.1016/j.ssc.2005.11.041$$gVol. 137, p. 301 - 305$$p301 - 305$$q137<301 - 305$$tSolid state communications$$v137$$x0038-1098$$y2006 000057845 8567_ $$uhttp://dx.doi.org/10.1016/j.ssc.2005.11.041 000057845 909CO $$ooai:juser.fz-juelich.de:57845$$pVDB 000057845 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000057845 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1 000057845 9141_ $$aNachtrag$$y2006 000057845 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000057845 9201_ $$0I:(DE-Juel1)VDB341$$d31.12.2006$$gIFF$$kIFF-INS$$lNeutronenstreuung$$x1 000057845 9201_ $$0I:(DE-Juel1)VDB342$$d31.12.2006$$gIFF$$kIFF-ISM$$lStreumethoden$$x2 000057845 970__ $$aVDB:(DE-Juel1)90970 000057845 980__ $$aVDB 000057845 980__ $$aConvertedRecord 000057845 980__ $$ajournal 000057845 980__ $$aI:(DE-Juel1)ICS-1-20110106 000057845 980__ $$aI:(DE-Juel1)PGI-4-20110106 000057845 980__ $$aUNRESTRICTED 000057845 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000057845 981__ $$aI:(DE-Juel1)IBI-8-20200312 000057845 981__ $$aI:(DE-Juel1)JCNS-1-20110106 000057845 981__ $$aI:(DE-Juel1)ICS-1-20110106 000057845 981__ $$aI:(DE-Juel1)PGI-4-20110106