001     57845
005     20240619091623.0
024 7 _ |2 DOI
|a 10.1016/j.ssc.2005.11.041
024 7 _ |2 WOS
|a WOS:000235426400005
037 _ _ |a PreJuSER-57845
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Köbler, U.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB787
245 _ _ |a One-dimensional bulk ferromagnets: NdAl2 and hcp cobalt
260 _ _ |a New York, NY [u.a.]
|b Elsevier Science
|c 2006
300 _ _ |a 301 - 305
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Solid State Communications
|x 0038-1098
|0 5564
|y 6
|v 137
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a It is shown experimentally that NdAl2 and hcp cobalt are one-dimensional (1D) bulk ferromagnets. For hcp cobalt this is only under the condition that the sample is magnetically saturated, i.e. that all moments are aligned parallel to the hexagonal c-axis. In 1D magnets the transverse interactions need not to be zero but must be sufficiently weak such that the transverse correlation length does not diverge at the critical temperature. The transverse interactions are then not relevant and the phase transition is driven by the longitudinal interactions. On the other hand, magnetic Bragg scattering relies on finite transverse correlations. For NdAl2 no conventional magnetic Bragg scattering is observed if all moments are aligned vertical to the scattering plane by a magnetic field. For hcp cobalt the scattering intensity is considerably reduced in this geometry instead of having its maximum. From this observation it can be concluded that the transverse correlation length is practically zero in NdAl2 but has a finite value in hcp cobalt. The macroscopic magnetization shows normal ferromagnetic saturation. (c) 2005 Elsevier Ltd. All rights reserved.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
536 _ _ |a Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|c P55
|0 G:(DE-Juel1)FUEK415
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a low-dimensional systems
653 2 0 |2 Author
|a ferromagnetism
653 2 0 |2 Author
|a neutron diffraction
700 1 _ |a Hoser, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB655
700 1 _ |a Hoffmann, J.-U.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Thomas, C.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB1640
773 _ _ |a 10.1016/j.ssc.2005.11.041
|g Vol. 137, p. 301 - 305
|p 301 - 305
|q 137<301 - 305
|0 PERI:(DE-600)1467698-9
|t Solid state communications
|v 137
|y 2006
|x 0038-1098
856 7 _ |u http://dx.doi.org/10.1016/j.ssc.2005.11.041
909 C O |o oai:juser.fz-juelich.de:57845
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
913 1 _ |k P55
|v Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|l Großgeräteforschung mit Photonen, Neutronen und Ionen
|b Struktur der Materie
|0 G:(DE-Juel1)FUEK415
|x 1
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-INS
|l Neutronenstreuung
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB341
|x 1
920 1 _ |k IFF-ISM
|l Streumethoden
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB342
|x 2
970 _ _ |a VDB:(DE-Juel1)90970
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106
981 _ _ |a I:(DE-Juel1)PGI-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21