001     57854
005     20161225175424.0
024 7 _ |2 pmid
|a pmid:16253525
024 7 _ |2 DOI
|a 10.1016/j.neuroimage.2005.08.052
024 7 _ |2 WOS
|a WOS:000235227400024
037 _ _ |a PreJuSER-57854
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Neurosciences
084 _ _ |2 WoS
|a Neuroimaging
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Golaszewski, S. M.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Human brain structures related to planar vibrotactile stimulation: a functional magnetic resonance imaging study
260 _ _ |a Orlando, Fla.
|b Academic Press
|c 2006
300 _ _ |a 923 - 929
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a NeuroImage
|x 1053-8119
|0 4545
|y 3
|v 29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The purpose of this study was to investigate the sensorimotor cortex response to plantar vibrotactile stimulation using a newly developed MRI compatible vibration device. Ten healthy subjects (20-45 years) were investigated. Vibrotactile stimulation of the sole of the foot with a frequency of 50 Hz and a displacement of 1 mm was performed during fMRI (echo-planar imaging sequence at 1.5 T) using an MRI compatible moving magnet actuator that is able to produce vibration frequencies between 0 and 100 Hz and displacement amplitudes between 0 and 4 mm. The fMRI measurement during vibrotactile stimulation of the right foot revealed brain activation contralaterally within the primary sensorimotor cortex, bilaterally within the secondary somatosensory cortex, bilaterally within the superior temporal, inferior parietal, and posterior insular region, bilaterally within the anterior and posterior cingular gyrus, bilaterally within the thalamus and caudate nucleus, contralaterally within the lentiform nucleus, and bilaterally within the anterior and posterior cerebellar lobe. The advantages of the new MRI compatible vibration device include effective transmission of the stimulus and controlled vibration amplitudes, frequencies, and intensities. The results indicate that plantar vibration can be a suitable paradigm to observe activation within the sensorimotor network in fMRI. Furthermore, the method may be used to determine the optimal responsiveness of the individual sensorimotor network.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Brain Mapping: methods
650 _ 2 |2 MeSH
|a Echo-Planar Imaging
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Foot: innervation
650 _ 2 |2 MeSH
|a Foot: physiology
650 _ 2 |2 MeSH
|a Functional Laterality: physiology
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Image Processing, Computer-Assisted
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Motor Cortex: anatomy & histology
650 _ 2 |2 MeSH
|a Motor Cortex: physiology
650 _ 2 |2 MeSH
|a Neural Pathways: anatomy & histology
650 _ 2 |2 MeSH
|a Neural Pathways: physiology
650 _ 2 |2 MeSH
|a Physical Stimulation
650 _ 2 |2 MeSH
|a Somatosensory Cortex: anatomy & histology
650 _ 2 |2 MeSH
|a Somatosensory Cortex: physiology
650 _ 2 |2 MeSH
|a Vibration
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a functional MRI
653 2 0 |2 Author
|a vibrotactile stimulation of the sole of the foot
653 2 0 |2 Author
|a sensorimotor cortex for the lower extremity
700 1 _ |a Siedentopf, C. M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Koppelstaetter, F.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Fend, M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Ischebeck, A.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Gonzalez-Felipe, V.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB69999
700 1 _ |a Haala, I.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Struhal, W.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Mottaghy, F. M.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Gallasch, E.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Felber, S. R.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Gerstenbrand, F.
|b 11
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.neuroimage.2005.08.052
|g Vol. 29, p. 923 - 929
|p 923 - 929
|q 29<923 - 929
|0 PERI:(DE-600)1471418-8
|t NeuroImage
|v 29
|y 2006
|x 1053-8119
856 7 _ |u http://dx.doi.org/10.1016/j.neuroimage.2005.08.052
909 C O |o oai:juser.fz-juelich.de:57854
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IME
|l Institut für Medizin
|d 31.12.2006
|g IME
|0 I:(DE-Juel1)VDB54
|x 1
970 _ _ |a VDB:(DE-Juel1)90988
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INB-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INB-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21