000058028 001__ 58028
000058028 005__ 20180211185857.0
000058028 0247_ $$2DOI$$a10.1007/s00339-007-3866-3
000058028 0247_ $$2WOS$$aWOS:000245964300019
000058028 0247_ $$2ISSN$$a0947-8396
000058028 037__ $$aPreJuSER-58028
000058028 041__ $$aeng
000058028 082__ $$a530
000058028 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000058028 084__ $$2WoS$$aPhysics, Applied
000058028 1001_ $$0P:(DE-HGF)0$$aHalder, S.$$b0
000058028 245__ $$aEnhanced stability of platinized silicon substrates using an unconventional adhesion layer deposited by CSD for high temperature dielectric thin film deposition
000058028 260__ $$aBerlin$$bSpringer$$c2007
000058028 300__ $$a705 - 708
000058028 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058028 3367_ $$2DataCite$$aOutput Types/Journal article
000058028 3367_ $$00$$2EndNote$$aJournal Article
000058028 3367_ $$2BibTeX$$aARTICLE
000058028 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058028 3367_ $$2DRIVER$$aarticle
000058028 440_0 $$0560$$aApplied Physics A$$v87$$x0947-8396
000058028 500__ $$aRecord converted from VDB: 12.11.2012
000058028 520__ $$aAlmost all platinized substrates manufactured presently use an TiO2 adhesion layer to improve the adhesion between the SiO2 and the Pt. These substrates however are stable till only 800 degrees C. We show that simply by replacing the TiO2 with Al2O3, the stability of the electrodes can be increased to 1000 degrees C and more. These substrates can be used for high temperature depositions which standard platinized substrates cannot withstand. Further we show that dielectric thin films of BaTiO3 and (Ba,Sr)TiO3 crystallized at higher temperatures show almost a threefold increase in permittivity on these high temperature stable platinized silicon substrates.The large increase in permittivity is attributed to an increase in grain size at high temperatures.
000058028 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000058028 588__ $$aDataset connected to Web of Science
000058028 650_7 $$2WoSType$$aJ
000058028 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b1
000058028 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2$$uFZJ
000058028 773__ $$0PERI:(DE-600)1398311-8$$a10.1007/s00339-007-3866-3$$gVol. 87, p. 705 - 708$$p705 - 708$$q87<705 - 708$$tApplied physics / A$$v87$$x0947-8396$$y2007
000058028 8567_ $$uhttp://dx.doi.org/10.1007/s00339-007-3866-3
000058028 909CO $$ooai:juser.fz-juelich.de:58028$$pVDB
000058028 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000058028 9141_ $$y2007
000058028 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000058028 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000058028 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000058028 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000058028 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000058028 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000058028 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000058028 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000058028 970__ $$aVDB:(DE-Juel1)91206
000058028 980__ $$aVDB
000058028 980__ $$aConvertedRecord
000058028 980__ $$ajournal
000058028 980__ $$aI:(DE-Juel1)PGI-7-20110106
000058028 980__ $$aI:(DE-Juel1)VDB381
000058028 980__ $$aI:(DE-82)080009_20140620
000058028 980__ $$aUNRESTRICTED
000058028 981__ $$aI:(DE-Juel1)PGI-7-20110106
000058028 981__ $$aI:(DE-Juel1)VDB381
000058028 981__ $$aI:(DE-Juel1)VDB881