000058071 001__ 58071 000058071 005__ 20240712100842.0 000058071 0247_ $$2DOI$$a10.1029/2007GL031334 000058071 0247_ $$2WOS$$aWOS:000252183100001 000058071 0247_ $$2Handle$$a2128/20798 000058071 037__ $$aPreJuSER-58071 000058071 041__ $$aeng 000058071 082__ $$a550 000058071 084__ $$2WoS$$aGeosciences, Multidisciplinary 000058071 1001_ $$0P:(DE-Juel1)VDB14612$$aFeck, T.$$b0$$uFZJ 000058071 245__ $$aSensitivity of Arctic ozone loss to stratospheric H2O 000058071 260__ $$aWashington, DC$$bAmerican Geophysical Union$$c2008 000058071 300__ $$a 000058071 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000058071 3367_ $$2DataCite$$aOutput Types/Journal article 000058071 3367_ $$00$$2EndNote$$aJournal Article 000058071 3367_ $$2BibTeX$$aARTICLE 000058071 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000058071 3367_ $$2DRIVER$$aarticle 000058071 440_0 $$02249$$aGeophysical Research Letters$$v35$$x0094-8276$$yL01803 000058071 500__ $$aRecord converted from VDB: 12.11.2012 000058071 520__ $$aLikely causes of a future increase in stratospheric H2O are a rise in tropospheric CH4 and H-2 leakages from an increased integration of hydrogen into the energy supply system. Here we evaluate the impact of potential future stratospheric H2O increases on Arctic ozone loss by comparing ozone loss proxies based on two different mechanisms of chlorine activation. In particular, the H2O dependence of the volume of air is analyzed where temperatures are low enough to form nitric acid trihydrate, denoted as V-PSC, and for C1 activation on liquid sulfate aerosols, denoted as V-AC1. We show that V-AC1 increases faster than VPSC with increasing H2O mixing ratios in the altitude range of 400 K to 550 K potential temperature. As a consequence, the additional ozone column loss is expected to be most pronounced for cold winters and large H2O increases and to be significantly higher when V-AC1 is used as a proxy. 000058071 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0 000058071 588__ $$aDataset connected to Web of Science 000058071 650_7 $$2WoSType$$aJ 000058071 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J.-U.$$b1$$uFZJ 000058071 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b2$$uFZJ 000058071 773__ $$0PERI:(DE-600)2021599-X$$a10.1029/2007GL031334$$gVol. 35$$q35$$tGeophysical research letters$$v35$$x0094-8276$$y2008 000058071 8567_ $$uhttp://dx.doi.org/10.1029/2007GL031334 000058071 8564_ $$uhttps://juser.fz-juelich.de/record/58071/files/2007GL031334.pdf$$yOpenAccess 000058071 8564_ $$uhttps://juser.fz-juelich.de/record/58071/files/2007GL031334.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000058071 909CO $$ooai:juser.fz-juelich.de:58071$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000058071 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23 000058071 9141_ $$y2008 000058071 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000058071 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000058071 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1 000058071 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2 000058071 970__ $$aVDB:(DE-Juel1)91246 000058071 9801_ $$aFullTexts 000058071 980__ $$aVDB 000058071 980__ $$aConvertedRecord 000058071 980__ $$ajournal 000058071 980__ $$aI:(DE-Juel1)IEK-7-20101013 000058071 980__ $$aI:(DE-Juel1)VDB1045 000058071 980__ $$aUNRESTRICTED 000058071 981__ $$aI:(DE-Juel1)ICE-4-20101013 000058071 981__ $$aI:(DE-Juel1)IEK-7-20101013 000058071 981__ $$aI:(DE-Juel1)VDB1045