001     58071
005     20240712100842.0
024 7 _ |a 10.1029/2007GL031334
|2 DOI
024 7 _ |a WOS:000252183100001
|2 WOS
024 7 _ |a 2128/20798
|2 Handle
037 _ _ |a PreJuSER-58071
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Geosciences, Multidisciplinary
100 1 _ |a Feck, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB14612
245 _ _ |a Sensitivity of Arctic ozone loss to stratospheric H2O
260 _ _ |a Washington, DC
|b American Geophysical Union
|c 2008
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Geophysical Research Letters
|x 0094-8276
|0 2249
|y L01803
|v 35
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Likely causes of a future increase in stratospheric H2O are a rise in tropospheric CH4 and H-2 leakages from an increased integration of hydrogen into the energy supply system. Here we evaluate the impact of potential future stratospheric H2O increases on Arctic ozone loss by comparing ozone loss proxies based on two different mechanisms of chlorine activation. In particular, the H2O dependence of the volume of air is analyzed where temperatures are low enough to form nitric acid trihydrate, denoted as V-PSC, and for C1 activation on liquid sulfate aerosols, denoted as V-AC1. We show that V-AC1 increases faster than VPSC with increasing H2O mixing ratios in the altitude range of 400 K to 550 K potential temperature. As a consequence, the additional ozone column loss is expected to be most pronounced for cold winters and large H2O increases and to be significantly higher when V-AC1 is used as a proxy.
536 _ _ |a Atmosphäre und Klima
|c P22
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK406
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Grooß, J.-U.
|b 1
|u FZJ
|0 P:(DE-Juel1)129122
700 1 _ |a Riese, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)129145
773 _ _ |a 10.1029/2007GL031334
|g Vol. 35
|q 35
|0 PERI:(DE-600)2021599-X
|t Geophysical research letters
|v 35
|y 2008
|x 0094-8276
856 7 _ |u http://dx.doi.org/10.1029/2007GL031334
856 4 _ |u https://juser.fz-juelich.de/record/58071/files/2007GL031334.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/58071/files/2007GL031334.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:58071
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P22
|v Atmosphäre und Klima
|l Atmosphäre und Klima
|b Umwelt
|z fortgesetzt als P23
|0 G:(DE-Juel1)FUEK406
|x 0
914 1 _ |y 2008
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k ICG-1
|l Stratosphäre
|d 30.09.2010
|g ICG
|0 I:(DE-Juel1)VDB790
|x 1
920 1 _ |k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|0 I:(DE-Juel1)VDB1045
|x 2
970 _ _ |a VDB:(DE-Juel1)91246
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013
981 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)VDB1045


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21