000058072 001__ 58072
000058072 005__ 20240712100842.0
000058072 0247_ $$2WOS$$aWOS:000247572500015
000058072 0247_ $$2doi$$a10.5194/acp-7-3285-2007
000058072 0247_ $$2Handle$$a2128/8659
000058072 037__ $$aPreJuSER-58072
000058072 041__ $$aeng
000058072 082__ $$a550
000058072 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000058072 1001_ $$0P:(DE-Juel1)129130$$aKonopka, P.$$b0$$uFZJ
000058072 245__ $$aContribution of mixing to the upward transport across the TTL
000058072 260__ $$aKatlenburg-Lindau$$bEGU$$c2007
000058072 300__ $$a3285 - 3308
000058072 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058072 3367_ $$2DataCite$$aOutput Types/Journal article
000058072 3367_ $$00$$2EndNote$$aJournal Article
000058072 3367_ $$2BibTeX$$aARTICLE
000058072 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058072 3367_ $$2DRIVER$$aarticle
000058072 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v7$$x1680-7316
000058072 500__ $$aRecord converted from VDB: 12.11.2012
000058072 520__ $$aDuring the second part of the TROCCINOX campaign that took place in Brazil in early 2005, chemical species were measured on-board the high-altitude research aircraft Geophysica ( ozone, water vapor, NO, NOy, CH4 and CO) in the altitude range up to 20 km ( or up to 450 K potential temperature), i.e. spanning the entire TTL region roughly extending between 350 and 420 K.Here, analysis of transport across the TTL is performed using a new version of the Chemical Lagrangian Model of the Stratosphere (CLaMS). In this new version, the stratospheric model has been extended to the earth surface. Above the tropopause, the isentropic and cross-isentropic advection in CLaMS is driven by meteorological analysis winds and heating/ cooling rates derived from a radiation calculation. Below the tropopause, the model smoothly transforms from the isentropic to the hybrid-pressure coordinate and, in this way, takes into account the effect of large-scale convective transport as implemented in the vertical wind of the meteorological analysis. As in previous CLaMS simulations, the irreversible transport, i. e. mixing, is controlled by the local horizontal strain and vertical shear rates.Stratospheric and tropospheric signatures in the TTL can be seen both in the observations and in the model. The composition of air above approximate to 350 K is mainly controlled by mixing on a time scale of weeks or even months. Based on CLaMS transport studies where mixing can be completely switched off, we deduce that vertical mixing, mainly driven by the vertical shear in the tropical flanks of the subtropical jets and, to some extent, in the the outflow regions of the large-scale convection, offers an explanation for the upward transport of trace species from the main convective outflow at around 350 K up to the tropical tropopause around 380 K.
000058072 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000058072 588__ $$aDataset connected to Web of Science
000058072 650_7 $$2WoSType$$aJ
000058072 7001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b1$$uFZJ
000058072 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b2$$uFZJ
000058072 7001_ $$0P:(DE-Juel1)VDB65027$$ados Santos, F. H.$$b3$$uFZJ
000058072 7001_ $$0P:(DE-Juel1)VDB1410$$aSchiller, C.$$b4$$uFZJ
000058072 7001_ $$0P:(DE-HGF)0$$aUlanovsky, A.$$b5
000058072 7001_ $$0P:(DE-HGF)0$$aSchlager, H.$$b6
000058072 7001_ $$0P:(DE-HGF)0$$aVolk, C. M.$$b7
000058072 7001_ $$0P:(DE-HGF)0$$aViciani, S.$$b8
000058072 7001_ $$0P:(DE-HGF)0$$aPan, L.$$b9
000058072 7001_ $$0P:(DE-HGF)0$$aMcKenna, D. S.$$b10
000058072 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b11$$uFZJ
000058072 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-7-3285-2007$$gVol. 7, p. 3285 - 3308$$p3285 - 3308$$q7<3285 - 3308$$tAtmospheric chemistry and physics$$v7$$x1680-7316$$y2007
000058072 8564_ $$uhttps://juser.fz-juelich.de/record/58072/files/acp-7-3285-2007.pdf$$yOpenAccess
000058072 8564_ $$uhttps://juser.fz-juelich.de/record/58072/files/acp-7-3285-2007.gif?subformat=icon$$xicon$$yOpenAccess
000058072 8564_ $$uhttps://juser.fz-juelich.de/record/58072/files/acp-7-3285-2007.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000058072 8564_ $$uhttps://juser.fz-juelich.de/record/58072/files/acp-7-3285-2007.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000058072 8564_ $$uhttps://juser.fz-juelich.de/record/58072/files/acp-7-3285-2007.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000058072 909CO $$ooai:juser.fz-juelich.de:58072$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000058072 9141_ $$y2007
000058072 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000058072 915__ $$0StatID:(DE-HGF)0510$$aOpenAccess
000058072 915__ $$0LIC:(DE-HGF)CCBYNCSA2$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-ShareAlike CC BY-NC-SA 2.0
000058072 9131_ $$0G:(DE-Juel1)FUEK406$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000058072 9201_ $$0I:(DE-Juel1)VDB790$$d30.09.2010$$gICG$$kICG-1$$lStratosphäre$$x1
000058072 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2
000058072 970__ $$aVDB:(DE-Juel1)91247
000058072 9801_ $$aFullTexts
000058072 980__ $$aFullTexts
000058072 980__ $$aConvertedRecord
000058072 980__ $$aI:(DE-Juel1)IEK-7-20101013
000058072 980__ $$ajournal
000058072 980__ $$aVDB
000058072 980__ $$aI:(DE-Juel1)VDB1045
000058072 980__ $$aUNRESTRICTED
000058072 981__ $$aI:(DE-Juel1)ICE-4-20101013
000058072 981__ $$aI:(DE-Juel1)IEK-7-20101013
000058072 981__ $$aI:(DE-Juel1)VDB1045