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Abstract. During the second part of the TROCCINOX

campaign that took place in Brazil in early 2005, chemical

species were measured on-board the high-altitude research

aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and

CO) in the altitude range up to 20 km (or up to 450K poten-

tial temperature), i.e. spanning the entire TTL region roughly

extending between 350 and 420K.

Here, analysis of transport across the TTL is performed

using a new version of the Chemical Lagrangian Model of

the Stratosphere (CLaMS). In this new version, the strato-

spheric model has been extended to the earth surface. Above

the tropopause, the isentropic and cross-isentropic advection

in CLaMS is driven by meteorological analysis winds and

heating/cooling rates derived from a radiation calculation.

Below the tropopause, the model smoothly transforms from

the isentropic to the hybrid-pressure coordinate and, in this

way, takes into account the effect of large-scale convective

transport as implemented in the vertical wind of the meteo-

rological analysis. As in previous CLaMS simulations, the

irreversible transport, i.e. mixing, is controlled by the local

horizontal strain and vertical shear rates.

Stratospheric and tropospheric signatures in the TTL can

be seen both in the observations and in the model. The com-

position of air above ≈350K is mainly controlled by mixing

on a time scale of weeks or even months. Based on CLaMS

transport studies where mixing can be completely switched

off, we deduce that vertical mixing, mainly driven by the ver-

tical shear in the tropical flanks of the subtropical jets and,
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to some extent, in the the outflow regions of the large-scale

convection, offers an explanation for the upward transport

of trace species from the main convective outflow at around

350K up to the tropical tropopause around 380K.

1 Introduction

The composition of the air entering the stratosphere is mainly

determined by the transport processes within the tropical

tropopause layer (TTL) (Atticks and Robinson, 1983) cou-

pling the Hadley circulation in the tropical troposphere with

the much slower, Brewer-Dobson circulation in the strato-

sphere. Whereas the former is dominated by convective pro-

cesses, the latter is driven mainly by radiation and extratrop-

ical wave drag (Holton et al., 1995).

The lowest boundary of the TTL, around θ =350K isen-

tropic surface (see Fig. 1), can be defined by the level of the

main convective outflow (Gettelman and de Forster, 2002;

Folkins and Martin, 2005). The upper limit of the TTL is ex-

pected to be above the cold point tropopause at around 380K

but below≈420K, marking the highest level of the observed

deepest convection events (Kelly et al., 1993; Sherwood and

Dessler, 2001).

Laterally, the TTL is confined by the subtropical jets

(STJ), which vary seasonally both in their intensity and

meridional position (yellow ellipses in Fig. 1), with a strong,

equatorwards shifted jet in the winter hemisphere and a

weak, meandering, polewards shifted STJ in the summer

hemisphere. Following the concept of effective diffusiv-

ity, Haynes and Shuckburgh (2000) showed that a strong

Published by Copernicus Publications on behalf of the European Geosciences Union.
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Fig. 1. Schematic of transport processes connecting the tropical tropopause layer (TTL, dark gray) with the stratosphere. Whereas the

quasi-isentropic transport processes across the subtropical jets (STJs, yellow) dominate the exchange between the TTL and the lowermost

stratosphere (dashed), the vertical transport across the TTL lifts tropospheric air into the stratospheric overworld. This transport path starts

approximately at the main convective outflow level around θ≈350K and, following the blue arrows, crosses the level of zero clear sky

radiative heating (Q=0) around 360K, and finally reaches the lower stratosphere above the cold point tropopause at around 380K. Both

quasi-isentropic and vertical transport depend on season, with different strengths and positions of the STJs in the winter (WH) and summer

hemispheres (SH).

STJ forms an effective transport barrier for the merid-

ional, quasi-isentropic transport between the TTL and mid-

latitudes with the highest permeability during monsoon cir-

culations, mainly in the Northern Hemisphere, when a strong

upper-level anticyclone over south-east Asia disrupts the

zonal symmetry of the STJ. Furthermore, Haynes and Shuck-

burgh (2000) concluded that STJ in the southern summer

hemisphere is generally a stronger transport barrier than in

the Northern Hemisphere during the same season.

Because deep convection events transporting air directly

into the stratosphere seem to be too rare to supply the

Brewer-Dobson circulation with sufficient mass (Gettelman

et al., 2002), the question arises of other possible phys-

ical mechanisms for the troposphere-to-stratosphere trans-

port, TST (in the following, the reverse transport is abbre-

viated as STT), that lifts air masses from the main convective

outflow around 350 K across the TTL into the lower strato-

sphere. The typical time scales for this transport, as derived

from the upward propagation of the seasonal cycle of CO2
arising in the planetary boundary layer, vary between 2 and

3 months for the upward transport from θ=350K to 390 and

420K, respectively (Andrews et al., 1999).

It is generally believed that the radiative heating effec-

tively lifts air masses within the TTL above the Q=0 level

where the background clear sky heating rate changes from

a net cooling below to a net heating above. This transi-

tion level was generally found at an almost constant value

of θ=360K (≈15 km) (Gettelman et al., 2004). The tran-

sition from radiative cooling to radiative heating is driven

by the combination of a rapid decrease in water vapor mix-

ing ratios (longwave cooling is negligible above 360K), sup-

pressed longwave emission from CO2 and ozone due to ex-

tremely cold temperatures and an increase of shortwave heat-

ing above 360K owing to enhanced ozone mixing ratios.

Although, this explanation is widely subscribed to, there

remain aspects of TST that are not adequately addressed,

for instance: How do air parcels overcome the vertical gap

between the main convective outflow around 350K and the

level with significant heating rates? Normally, air parcels

within the outflow region of the convective towers sink due

to radiative cooling rather than ascend into the stratosphere.

Clouds in the TTL tend to increase the potential temperature

whereQ=0 occurs due to suppressed longwave heating from

the earth’s surface of the air masses above clouds (Doherty

et al., 1984; Gettelman et al., 2004). Consequently, clouds

increase the gap between the convective outflow and radia-

tion driven transport by up to ≈25K. Recently, Corti et al.

(2006) proposed a new radiation-based mechanism showing

that lofting due to heating within thin cirrus clouds has the

potential to overcome this gap but there is still neither exper-

imental evidence nor 3-D transport studies driven by realis-

tic winds and cirrus cloud distributions which would support

this theory.

Here, we propose an alternative, non-advective, mecha-

nism for TST across the TTL mainly based on mixing in this

region as diagnosed by the Chemical Lagrangian Model of
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the Stratosphere (CLaMS) (McKenna et al., 2002; Konopka

et al., 2004). We show that the concept of deformation-

induced mixing driven by large-scale meteorological winds

as implemented in CLaMS identifies the TTL as a region

with enhanced horizontal and vertical gradients in the hor-

izontal wind, i.e. as a region with increased horizontal strain

and vertical shear rates, mainly occurring in the vicinity of

the STJs, preferably on their tropical sides but also in the

tropics in the outflow of large-scale convective systems. Fur-

thermore, we also show that these high deformation rates

have the potential to enhance diffusive fluxes, in particular

those of the trace gases with horizontal and/or vertical gra-

dients, and that such diffusive fluxes may contribute to the

transport across the tropopause.

The importance of the STJs as mixing barriers for hor-

izontal transport across the tropopause separating the TTL

from the lowermost stratosphere was recently discussed by

d’Ovidio et al. (2007)1. Using the concept of the (Lyapunov)

effective diffusivity, they diagnosed an enhanced isentropic

mixing at the θ=350K level, mainly within the tropics con-

fined by the STJs and with the highest values on the tropical

side of these jets but with a clear minimum at their centers.

Observations of ozone filaments around the STJs formed

by breaking Rossby waves (Bradshaw et al., 2002a,b) or

measurements of increased turbulence caused by shear-

induced gravity waves (Pavelin and Whiteway, 2002) also

indicate enhanced mixing in these regions. Furthermore,

the reverse-domain-filling technique (RDF) with Lagrangian

mixing (Legras et al., 2005) has had some success in re-

constructing tracer structures that are not resolved by con-

ventional CTMs and has demonstrated that enhanced mixing

correlates with high Lyapunov exponents measuring the de-

formations in the flow. This property also characterizes the

CLaMS parameterization of mixing, e.g. strongly enhanced

mixing in CLaMS can be found in the flanks of the subtropi-

cal jet (Pan et al., 2006).

Generally, there are two ways how the tropospheric air

within the TTL can enter the stratosphere. The most domi-

nant part (about 95% of the mass, Levine et al., 2007) crosses

the STJs quasi-isentropically, mainly across the weak sum-

mer jets and reaches the lowermost stratosphere, i.e. the de-

scending branch of the Brewer-Dobson circulation, whereas

only a relatively small part (<5%) enters the stratosphere

(overworld). In this paper, we propose that, in addition to the

isentropic mixing across the STJs, the deformation-driven,

irreversible vertical transport in CLaMS offers an alternative

mechanism for the upward transport of trace species across

the TTL.

The paper is organized as follows. In the next section we

describe the newly improved version of CLaMS. In this new

version, the stratospheric CTM is extended through a hy-

1d’Ovidio, F., Legras, B., and Shuckburgh, E.: Local diagnostic

of mixing and barrier modulation at the tropopause, J. Atmos. Sci.,

submitted, 2007.

brid coordinate to the surface, incorporating the entire tro-

posphere. To validate this new version, we use in situ obser-

vations on-board the high-altitude Russian aircraft Geophys-

ica during the TROCCINOX (Tropical Convection, Cirrus

and Nitrogen Oxides Experiment) campaign in early 2005

in Brazil that is briefly described in Sect. 3. In particular, to

validate both STT and TST, in Sects. 4 and 5, respectively,

we compare the simulated tracer distributions with data ob-

tained during two long-range flights penetrating the TTL. In

Sect. 6, we discuss the contribution of mixing to the transport

across the TTL and, finally, conclusions are drawn in Sect. 7.

2 Model description: CLaMS with stratosphere and

troposphere

To resolve transport processes in the troposphere, in particu-

lar within the TTL, the vertical coordinate of CLaMS was ex-

tended from the potential temperature θ , to a hybrid pressure-

potential temperature coordinate ζ (Mahowald et al., 2002).

In this section, we describe some details of this extension

mainly focusing on implications for the vertical transport, in

particular in regions affected by convection and by the STJ.

2.1 Hybrid vertical coordinate

Following the procedure proposed by Mahowald et al.

(2002), we generalize the potential temperature, θ , to a hy-

brid coordinate, ζ , that below a certain pressure level, pr ,

approximating the tropopause (i.e. for pressure values p>pr )

smoothly transforms from isentropic to pressure coordinates:

ζ(p) = f (η)θ(p, T (p)), η =
p

p0
(1)

with

f (η) =

{

sin
(

π
2
1−η
1−ηr

)

η > ηr

1 η ≤ ηr , ηr =
pr

p0

(2)

and θ=T (p0/p)κ , κ=0.286. Here, T denotes the temper-

ature, p0=1013 hPa is the constant surface pressure at sea

level and pr=100 hPa. This pressure level roughly corre-

sponds to the pressure at the tropical tropopause.

The ζ -coordinate is illustrated in the left panel of Fig. 2.

Here, as an example, the isolines of the zonally averaged

pressure p (blue) and potential temperature θ (orange) were

calculated for one particular ECMWF data set (1 January

2004, 12:00 UT) and plotted as a function of latitude and

the hybrid coordinate ζ . Above approximately ζ=380K,

the θ -isolines and the ζ -coordinates are the same, whereas

the p−isolines cross the ζ−levels. In contrast, below about

ζ=300K, the p and ζ levels tend to become parallel to each

other (even if the units of ζ are Kelvin), whereas the isen-

tropes cross these lines. The ζ=0 level exactly corresponds

to p=p0. The black region is confined by the ζ=0 level

www.atmos-chem-phys.net/7/3285/2007/ Atmos. Chem. Phys., 7, 3285–3308, 2007
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Fig. 2. CLaMS hybrid vertical coordinate ζ . Left: Entropy-preserving CLaMS layers 1ζ colored alternating gray and white are overlaid by

the isolines of zonally averaged pressure p (orange) and potential temperature θ (blue) (as an example derived for one ECMWF data set at 1

January 2004, 12:00 UT). Right: Entropy profile S(ζ ) (black) derived from Eq. (3) for the US standard atmosphere. The condition1S=const

in every layer 1ζ was used to generate CLaMS layers. The red bold dots denote the relative vertical diffusivity Dv(ζ )/Dv(ζ=380K)

calculated for one mixing event between two adjacent air parcels.

and the highest values of the orography within each latitude

bin (e.g. the highest point corresponds to the elevation of the

summit of Himalayas).

2.2 Entropy-preserving distribution of air parcels

Unlike Eulerian CTMs, CLaMS considers an ensemble of air

parcels on a time-dependent irregular grid (McKenna et al.,

2002; Konopka et al., 2004, 2005). The initial positions of

the air parcels have to be specified both in the horizontal and

vertical. For a given horizontal resolution, i.e. the mean hori-

zontal separation r0 between adjacent air parcels, their mean

vertical separation is, at first, a free parameter.

The layerwise mixing concept in CLaMS (i.e. the

deformation-induced mixing is applied layerwise, with each

layer containing approximately the same number of air

parcels) requires that a grid of vertical layers, each with the

thickness 1ζ , has to be defined. Generally, 1ζ depends on

ζ . In every layer, the air parcels are approximately uniformly

distributed over the layer thickness 1ζ and, consequently,

the mean vertical separation between the air parcels is given

by1ζ/2 or, in geometric space, by1z/2 where z denotes the

geometric altitude. The dependence of 1ζ on ζ is motivated

by the following ideas.

The ratio between r0 and 1z/2 in a given layer 1ζ , the

so-called aspect ratio α, controls not only the consistency

between the horizontal and vertical resolution of the model

(in the sense that the tracer variability is resolved, both hor-

izontally and vertically, to the same degree) but, in addition,

α also controls the horizontal and vertical diffusivities of

the air parcels involved in a mixing event. Because these

diffusivities are proportional to r20 and 1z2/4, respectively

(Konopka et al., 2004, this can also be derived from the di-

mensional analysis of the diffusion equation for the mixing

ratio µ, µ̇=D∇2µ, D∼L2/T , L, T -typical length and time

scales), an appropriate choice of α also guarantees that the

ratio between the horizontal and vertical diffusivity is cor-

rectly described.

From observations and theoretical estimates, Haynes and

Anglade (1997) concluded that α=250 is a good choice for

the lower stratosphere. Using this value and the potential

temperature as the vertical coordinate, CLaMS simulations,

mainly in the lower stratosphere, successfully reproduced the

observed small-scale structures as filaments, vortex remnants

or tracer gradients across the vortex edge (Konopka et al.,

2003, 2004; Grooß et al., 2005).

Because the assumption of α=const cannot be applied for

the troposphere (where much stronger vertical mixing is ex-

pected than in the lower stratosphere) and for the middle and

upper stratosphere (where only an increase of the vertical

diffusivity with altitude can explain the observed profiles in

terms of the 1-D age studies (Ehhalt et al., 2004)), we need

an additional criterion to determine the vertical spacing 1ζ

of the vertical layers, in particular if the CLaMS domain ex-

tends from the earth’s surface up to the stratopause.

Here, as a criterion for determining the dependence of 1ζ

on ζ , we propose to assume that the volume of each air parcel

contains the same amount of entropy S (Holton, 1992):

S ∼ cpn ln
θ

θ0
(3)

with specific heat cp, air density n, potential temperature θ

Atmos. Chem. Phys., 7, 3285–3308, 2007 www.atmos-chem-phys.net/7/3285/2007/
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and the reference potential temperature θ0 (i.e. entropy un-

derstood as an extensive quantity, so we have to multiply the

entropy density s=cp ln(θ/θ0) by the air density n). Using

θ and n profiles of the US standard atmosphere, S(ζ ) cal-

culated from Eq. (3) is plotted in the right panel of Fig. 2

(black) showing a clear maximum around 15 km. This is be-

cause θ increases while n decreases with altitude (or with ζ )

and, consequently, S(ζ ), which is proportional to n ln θ , has

a maximum.

Thus, in the new version of CLaMS, the vertical grid of

layers is defined in the following way (see left panel of

Fig. 2 where such layers are colored alternating gray and

white). First, for a given horizonal resolution r0 and aspect

ratio α (here α=250), a layer in the lower stratosphere with

a geometric thickness 1z=αr0 is calculated (here around

ζ=380K) and then transformed first to 1p using the US

standard atmosphere and then to 1ζ by applying Eq. (1).

By assuming that the total amount of entropy in this layer,

1S, should be the same for all layers (i.e.1S=const), we de-

fine the thickness1ζ of all other layers. Thus, by taking into

account the entropy S calculated for the U.S. standard atmo-

sphere, the entropy-preserving layers with variable vertical

spacing are created. An example is shown in Fig. 2 where

r0=200 km was specified.

In atmospheric models, the vertical resolution is mostly

kept constant over the model domain and often chosen inde-

pendently of the horizontal resolution. Although there can be

no mathematical proof of our proposed method to determine

a vertical spacing that varies with altitude, there are some

arguments which support the idea of the entropy-preserving

layers.

First, the relative vertical diffusivity of one mix-

ing event estimated from Dv(ζ )/Dv (ζ=380K)≈1z2

(ζ )/1z2(ζ=380K) and shown on the right side of Fig. 2

(red line) increases with distance from the ζ=380 level by

a factor of 10 around 30 km. This is in qualitative agreement

with the expected relative increase of the vertical diffusivity

as derived from the investigations of the age of air and of

(1-D) eddy diffusion coefficients (Ehhalt et al., 2004). Note

that the vertical grid with the thinnest layer around the tropi-

cal tropopause also implies the lowest vertical diffusivity per

mixing event in this region.

Another argument is based on the maximum of entropy S

near the tropopause (black line in the right panel of Fig. 2,

see also Emanuel, 2003, and references therein). If ques-

tions of mixing, i.e. of entropy production, are discussed, a

higher resolution of the mixing-dominated parts of the atmo-

sphere is required. The entropy-based measure of mixing at

the tropopause was recently discussed by Patmore and Toumi

(2006) showing that half of the entropy produced by mixing

can be attributed to subtropical “Rossby-driven” tropopause

folding events and that the remaining part can be associated

with tropical convective mixing and shear-induced mixing at

the STJs.

Thus, high entropy production occurs near the tropopause,

i.e. in a region where the entropy itself reaches its highest

values. We conclude from such arguments that, if mixing

in a discrete model like CLaMS is represented by creating

new air parcels and if the entropy is equally resolved over

the whole model domain, than each mixing event represents

approximately the same value of the mixing-induced entropy

production.

2.3 Hybrid vertical velocity

An important advantage of the ζ−coordinate is that it allows

the vertical velocities in the troposphere as implemented in

the meteorological data (that is ṗ=ω, ω-vertical velocity in

the p-coordinate), in particular the large-scale, convection-

driven transport in the tropics (i.e. convection understood as

a convection-induced bulk or mean vertical velocity averaged

within a grid box of the meteorological model) to be cou-

pled with the radiation-driven vertical velocities in the strato-

sphere (θ̇=Q,Q-heating rate).

Thus, as in the previous version of CLaMS, the isentropic

and cross-isentropic advection above the tropopause is driven

here by ECMWF winds and heating/cooling rates derived

from the Morcrette scheme under clear sky conditions (Mor-

crette, 1991; Zhong and Haigh, 1995).

Below the tropopause, where the ζ−coordinate behaves

like a pressure coordinate, the ECMWF ω-velocity is used,

which, within the ECMWF model, is derived from the conti-

nuity equation (Simmons et al., 1999). Strong updrafts due to

enhanced values of ω were found in the ECMWF analysis in

regions where large-scale convection such as that organized

in the mesoscale convective systems (MCS) occurred (e.g.

Hegglin et al., 2004). According to Mahowald et al. (2002),

the time derivative of ζ follows from its definition (Eq. 1):

ζ̇ =
dζ

dt
= ḟ θ + f θ̇ (4)

with

ḟ =

{

π
2

η̇
ηr−1
cos

(

π
2
1−η
1−ηr

)

η > ηr

0 η ≤ ηr

(5)

and η̇ = ṗ/p0.

Generally, the first term in Eq. (4) dominates the second

in convective regions. When ṗ is negligible (e.g. away from

convective regions in the tropics), Eq. (4) reduces to ζ̇=f θ̇ .

Thus, for pr=100 hPa (as used here), the factor f decreases

from 1, to 0.97, and 0.9 at p=100, 200 and 300 hPa, respec-

tively, guaranteeing that radiation, i.e. θ̇ , dominates the ver-

tical velocities in the TTL in regions not affected by convec-

tion.

Below the tropopause, the enhanced values of ζ̇ are

dominated by large-scale convection. To illustrate this, in

Fig. 3 we give an example of diagnosing fast vertical trans-

port using 5-days backward trajectories starting from the

www.atmos-chem-phys.net/7/3285/2007/ Atmos. Chem. Phys., 7, 3285–3308, 2007
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ζ =340 K

ζ =340 K

ζ =340 K

Fig. 3. Age of convection (top), 1θ experienced along the trajectories (middle) and the ECMWF water vapor distribution at ζ=340K

(bottom). The age of convection is derived from the 5-day backward trajectories starting at this level on 8 February 2005, 12:00 UT, and

is defined as the time lag between the initialization time and the time when the trajectory descended below pc=300 hPa. 1θ denotes the

increase of the potential temperature experienced by air parcels along these trajectories (positive values mean ascent with increasing time).

Overlaid are wind vectors (pink) plotted for wind velocities higher than 20 m/s and indicating the positions of STJs. The gray lines denote

the pressure isolines.
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ζ=340K surface (i.e. p≈180 . . . 220 hPa) on 8 February

2005, 12:00 UT (there is no preference for this apart from

the fact that it coincides with a Geophysica flight that will be

discussed below). The wind vectors (pink) highlight the po-

sition of the STJs, with higher values in the winter Northern

Hemisphere (u>60m/s) than in the summer Southern Hemi-

sphere.

To identify regions where strong updraft occurred in the

last 120 h, the elapsed time until a (backward) trajectory

descended below pc=300 hPa is shown in the top panel of

Fig. 3. In the middle panel of Fig. 3 we consider the change

of the potential temperature, 1θ , experienced by the air par-

cel along the trajectories (positive values mean ascent with

increasing time).

We assume that if 1θ values higher than 20K occur on a

time scale of the order 24 h, the corresponding regions can

be identified as regions affected by the large-scale convec-

tion. In the following, we denote this elapsed time as the

age of convection. Thus, between Indonesia and the south-

eastern Pacific a strong, large-scale updraft in the last 24 h

was found in a baroclinic weather system while over Brazil,

Central Africa andMadagascar regions with a more localized

convection were identified.

Now, we compare these signatures of large-scale up-

ward transport with the analyzed ECMWF specific humidity

(H2O) distribution (bottom panel of Fig. 3). The ECMWF

H2O distribution is a result of a 4-D variational analysis (4D-

Var) combining the radiosonde and satellite observations

with transport calculations constrained by the six-hourly

analysis of wind and temperature (Simmons et al., 1999).

The vertical transport of H2O in the ECMWFmodel is driven

not only by the ω-velocity but, in addition, by sub-grid con-

vective transport based on the Tiedtke (1989) parameteriza-

tion. Furthermore, condensation and evaporation processes

convert water between the gaseous, liquid and solid states.

Thus, the spatial distribution of the enhanced H2O values

in the upper troposphere can be understood as a proxy for the

fresh upward transport. In particular, between Indonesia and

the south-eastern Pacific, this distribution correlates fairly

well with the large-scale, upward transport derived from pure

trajectory calculations. A significantly increased density of

high clouds in this region was also observed by the GOES

satellite (not shown) indicating that large-scale convection in

connection with an ascent associated with latent heat release

is responsible for these patterns.

Finally, to illustrate the typical meridional and vertical dis-

tribution of ζ̇ , zonally and monthly averaged values calcu-

lated for March, June, September and December 2003 are

shown in Fig. 4. The vertical axis is rescaled by the use of

the entropy function S(ζ ) (see Fig. 2, right panel), so the en-

tropy density does not change along the vertical axis. In this

way, the tropopause region is expanded relative to the tro-

posphere and to the stratosphere. The gray contour defined

by ζ̇=0 separates the regions with positive (ascent) from re-

gions with negative values of ζ̇ (descent). The position of the

tropopause (blue lines) is inferred from the |PV|=2–4 isolines

in the extratropics and θ=380K in the tropics. The p- and

θ-isolines (black and pink) define the physical coordinates

whereas ζ=θ is valid only in the stratosphere.

Thus, in the tropics, above θ=360K, the radiatively driven

ascent determines the vertical velocities (ascending branch

of the Brewer-Dobson circulation), whereas convectively-

driven transport within the Hadley circulation (red and blue

regions near equator) determines the vertical velocities below

θ=340K. In particular, a cooling layer exists in the tropics

between 340 and 360K potential temperature, i.e. on aver-

age the air parcels descend rather than ascend in this region.

In the polar regions during the winter, increased diabatic de-

scent above 30 hPa indicates the positions of the polar vor-

tices.

The meridional positions of the jets can be deduced from

the isolines of the wind (white, solid – westerlies, dashed

– easterlies) with a clear signature of STJ (maxima around

ζ=360K) and of the polar jets in the middle stratosphere dur-

ing the winter. Below the tropopause in the extratropics, the

signatures of the Ferrell cells can be seen, which are driven

by zonally asymmetric eddies along the poleward flanks of

the STJ (e.g. Holton, 1992). It should be noted that because

ζ≈p below the tropopause, the major part of ζ̇ is associ-

ated with adiabatic eddy transport that would vanish if the

θ−coordinate were used down to the ground.

Furthermore, the upward velocities in the Ferrell cells

reach the extratropical tropopause (the gray contours defin-

ing ζ̇=0 cut the blue |PV|=2–4 PVU lines), although this

ECMWF-based vertical transport is probably too strong (see

ζ̇=0 isoline in the summer hemisphere in September in Fig. 4

extending up to 100 hPa). Thus, in the extratropics, pr val-

ues higher than 100 hPa seem to be more appropriate for the

transition level from the radiation- to pressure-related verti-

cal velocities.

2.4 Mixing

As in the previous CLaMS simulations, the initial distribu-

tion of air parcels is transported according to trajectories cal-

culated from horizontal ECMWF winds and vertical veloci-

ties ζ̇ with subsequent layerwise mixing. This mixing pro-

cedure inserts new air parcels into the irregular grid. In par-

ticular, such new air parcels are included in those parts of

the grid where distances between the next neighbors (calcu-

lated before the advection step) have increased above or have

fallen below a critical value (for details see Konopka et al.,

2003, 2004).

The mixing procedure uses the same optimized mixing

parameters as described in Konopka et al. (2004) (criti-

cal Lyapunov exponent λc=1.5 day
−1) and is applied af-

ter each advection step 1t=24 h. The critical defor-

mation associated with this advection step is given by

γc=λc1t=1.5. Thus, flow deformations with γ>γc ef-

fectively trigger mixing within CLaMS. This spatially and

www.atmos-chem-phys.net/7/3285/2007/ Atmos. Chem. Phys., 7, 3285–3308, 2007
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Fig. 4. Zonally and monthly averaged vertical velocities ζ̇ shown as a function of the entropy-weighted hybrid coordinate θ (i.e. the entropy

density along the vertical axis is constant). The gray contour defined by ζ̇ = 0 separates the ascent from descent regions. White contours

(solid – westerlies, dashed – easterlies) describe the zonal wind. The isolines of pressure (black) and potential temperature (pink) are overlaid.

The isolines |PV|=2 and 4 PVU together with the θ =380K line (blue) approximate the position of the tropopause in the extratropics and in

the tropics, respectively.

temporally inhomogeneous procedure is driven by strain and

shear rates of the horizontal wind with highest values in the

vicinity of the jets, in particular in the outer flanks of the po-

lar jet (Konopka et al., 2004, 2005) or in the vicinity of the

STJ (Pan et al., 2006).

Let us consider two adjacent air parcels separated by the

horizontal and vertical distances r0 and 1z/2, respectively,

and follow the CLaMS mixing procedure that is applied with

the frequency 1/1t (here 1t=24 h denotes the length of the

pure advection in terms of the trajectories and has nothing to

do with the trajectory integration time step that is of the order

of 10min). The (numerical) horizontal and vertical diffusivi-

ties of an air parcel involved in a mixing event can be approx-

imated byDh≈r20/41t andDv≈1z2/41t , respectively, and

are set to 0 if this air parcel was not affected by mixing. Dh

andDv can be understood as numerical errors of the time and

spatial interpolations on the air parcels created by the mixing

algorithm, which can also be reinterpreted as the diffusion

coefficients of a discretisized diffusion equation (Konopka

et al., 2004).

Now, we discuss how CLaMS mixing works within the

TTL. In the three panels of Fig. 5, the mean vertical dif-

fusivity Dv per air parcel is shown for ζ=340, 360, 380K

from top to bottom, respectively (blue shaded), as parameter-

ized by the CLaMS mixing algorithm applied for 8 February

2005, after the last advection step. The mean values of Dv

are derived from the fraction of air parcels affected by mixing

within the grid box with 150 km length. Dv varies between 0

(white) and ≈1m2/s (dark blue).

Stronger vertical diffusivity Dv (dark blue) can be found

in regions with enhanced horizontal velocity (STJs) or, as we

will discuss below, in regions with enhanced vertical shear

(tropics or STJs). The pattern of the horizontal diffusivity

Dh is approximately the same as that of the vertical dif-

fusivity Dv . With Dh=α2Dv (Haynes and Anglade, 1997;

Konopka et al., 2005), Dh is larger than Dv around the trop-

ical tropopause by approximately a factor 2502≈104. Be-

cause α decreases with distance from the ζ=380K level, the

corresponding values of Dh, relative to Dv , are also smaller.

To show that preferably vertical shear drives CLaMS mix-

ing within the TTL, the integral (Lyapunov exponents) and

the local (horizontal and vertical shear) measures of deforma-

tions are calculated within the CLaMS layer1ζ surrounding

the ζ=360K layer (Fig. 6). In particular, the Lyapunov ex-

ponents λ were derived from the elongation of a circle with

radius r0 (here 100 km) defined by ten additional air parcels

surrounding a given CLaMS air parcel. These additional

air parcels are defined either at the surface ζ=360K or are

Atmos. Chem. Phys., 7, 3285–3308, 2007 www.atmos-chem-phys.net/7/3285/2007/
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ζ =340 K

ζ =360 K

ζ =380 K

Fig. 5. CLaMS vertical diffusivity Dv on 8.02.2005 at ζ=340, 360 and 380K from top to bottom as implemented in CLaMS by the

deformation-induced mixing procedure (blue shaded). Wind vectors (pink) are plotted for wind velocities higher than 20m/s. The TROCCI-

NOX flights took place in the region framed in yellow, in particular the Geophysica flight on 8 February 2005 (beige) that will be discussed

below.
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a) hor. deformation, corr = 0.41 c) hor. shear, corr = 0.18

b) tot. deformation, corr = 0.84 d) vert. shear, corr = 0.72

Fig. 6. Measures of deformation at ζ=360K calculated in terms of the horizontal (a), total (b) deformations quantified by the Lyapunov

exponents and in terms of the horizontal (c) and vertical (d) shear. Correlation coefficients are calculated between the mean vertical diffusivity

Dv (middle panel of Fig. 5) and the respective measures of deformation. In the region framed in yellow, the TROCCINOX flights took place,

in particular the Geophysica flight on 8 February 2005 (beige). As we discuss below, the air composition during the flight segment around

θ=360K was influenced by aged convection caused by MCS over Argentina and South Brazil.

uniformly distributed within the layer 1ζ=15K around the

ζ=360K surface.

While in the first case only horizontal deformations lead

to increased values of λ, in the 3-D case the combined effect

of horizontal strain and vertical shear causes significantly

higher total deformations and, consequently, higher values

of λ. The corresponding mean Lyapunov exponents λ shown

in Figs. 6a and b were derived from 24-h forward trajectories

started on 7 February 2005 and averaged over the same grid

on which Dv was determined in Fig. 5.

In contrast to these integral (Lagrangian) measures of de-

formation, the local (Eulerian) horizontal and vertical shear

rates are shown in the right column of Fig. 6. The horizontal

shear (in 1/s) was determined from the absolute change of the

wind perpendicular to the wind direction (Fig. 6c) whereas

the vertical shear (in m/sK) plotted in Fig. 6d was derived

from the difference of the horizontal wind in the layer above

and below the considered layer. Both quantities were aver-

aged over five ECMWF data sets within the considered 24-h

time interval and over the same grid as the Lyapunov expo-

nents.

Correlation coefficients calculated between the mean ver-

tical diffusivity Dv (middle panel of Fig. 5) and the four pa-

rameters discussed (Fig. 6a to d) amount to 0.4, 0.8, 0.2, and

0.7 for the horizontal and total deformations as well as for

the horizontal and vertical shear, respectively. The values of

the coefficients calculated in the same way for ζ=340/360K

are given as 0.6/0.5, 0.8/0.8, 0.2/0.3 and 0.6/0.8, respectively.

As expected, the highest correlation coefficient was

achieved for the case considering the total deformations mea-

sured in terms of the 3-D Lyapunov exponent, because the

total integral deformation is the underlying driving force that

triggers the mixing algorithm in CLaMS (Konopka et al.,

2004, 2005). However, a remarkably high correlation could

be achieved between the CLaMS mixing intensity and the

vertical shear (Fig. 6d). Whereas in the vicinity of the STJs,

mainly vertical but also horizontal shear correlates fairly well

with the corresponding distribution of Dv (middle panel of

Fig. 5), regions with enhanced mixing within the tropics are

dominated by the vertical shear, to some extent in the outflow

regions of strong convection (see Fig. 3), in particular over

Indonesia, the south-eastern Pacific, Central Africa, Mada-

gascar and also Brazil (yellow framed region in Fig. 6d).

In the case of convection over Brazil, strong thunderstorms

were reported over Argentina and South Brazil during the

three days before the Geophysica penetrated the outflow of

these aged MCS. As discussed below (Sect. 5.2), the asso-

ciated MCSs, here in connection with the STJ that was dis-

placed southward by the Bolivian high, influenced the upper

tropospheric flow on the tropical side of the jet. This kind
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of coupling between the deep convection and the upper tro-

pospheric flow was recently discussed in connection with the

Asian summer monsoon anticyclone (Randel and Park, 2006)

that has some similarities with flow generated around the Bo-

livian high (Zhou and Lau, 1998). Thus, CLaMS transport in

the TTL shows strong mixing in the vicinity of the STJs and,

to some extent, in the outflow regions of the large-scale con-

vection, i.e., these locations are favored for mixing-induced

vertical transport.

2.5 Boundary conditions

In addition to the initial conditions that will be described in

the next section, boundary conditions need to be specified

for the CLaMS model domain. After each mixing procedure,

the air parcels in the top level of the model are replaced by

their initial geometric configuration. Furthermore, the mix-

ing ratios are set to prescribed values as given by the HALOE

climatology, Mainz-2-D model or by some additional con-

ditions (e.g. tracer-tracer correlations, (Grooß et al., 2005)).

Also the air parcels with ζ0<ζ<ζ0+1ζ0 with1ζ0=50K and

ζ0 defined by the surface that follows the orography at the

bottom of the model domain are replaced be their initial ge-

ometric positions. Their mixing ratios are either redefined in

a manner similar to the upper boundary or are interpolated

from their next neighbors and can be updated according to

prescribed fluxes.

The use of the pressure-like coordinate below the

tropopause, η=p/p0 instead of σ=p/psurf, i.e. a terrain-

following coordinate (see Eq. 1), is motivated solely by the

simplicity of this coordinate in a Lagrangian CTM. In Eu-

lerian models, the use of the σ coordinate allows to define a

compact surface as the lower boundary of the model at which

boundary conditions can be formulated. In contrast, the La-

grangian approach and in particular the use of the CLaMS

hybrid ζ− coordinate, allows to define the boundary con-

ditions within a layer 1ζ following the orography even if

some model layers intersect this terrain-following layer. If

the ECMWF velocities are correct, the trajectories of the air

parcels should overcome all possible orographic obstacles.

However, if any air parcel leaves the model domain the mix-

ing algorithm creates a new one by filling the resulting hole.

The mixing ratio of this air parcel is interpolated from the

next available neighbors.

Thus, in contrast to the Eulerian approach, it is not nec-

essary to have a single, terrain-following surface as the

lowest boundary of the model. Nevertheless, some stud-

ies comparing the positions of trajectories calculated in

σ -coordinates (FLEXPART) with the corresponding posi-

tions in p-coordinates (LAGRANTO) show some advan-

tages, mainly due to an improved interpolation technique

(Stohl et al., 2001). In summary, while our treatment of the

lower boundary might possibly cause some problems calcu-

lating mixing ratios in the boundary layer, it will have no

impact on the CLaMS simulations within the TTL.

3 Validation of CLaMS transport by TROCCINOX

measurements

To validate the properties of transport associated with the

new hybrid coordinate ζ , we use in situ data measured during

the TROCCINOX campaign on board the high altitude Rus-

sian aircraft, Geophysica. The campaign took place in early

2005 in Araçatuba (21.2◦ S, 50.4◦W), Brazil, with 8 local

and 8 transfer flights extending up to an altitude of 20 km (or

up to θ≈450K), i.e. covering the TTL region very well.

The experimental data used in this paper were sampled

with FOZAN (ozone), FISH (total and gas phase water),

HAGAR (CH4), SIOUX (NO, NOy) and COLD (CO) in-

struments. A detailed description of the instruments can be

found in Stefanutti et al. (2004) and Voigt et al. (2005) for

the SIOUX instrument.

3.1 Meteorological situation

The composition of tropical air in the vicinity of the

tropopause over Araçatuba was frequently influenced by the

interaction between the upper-level, quasi-stationary Boli-

vian high (BH) with STJ (see Fig. 7) surrounding the Bo-

livian high southerly. Zhou and Lau (1998) reported the ex-

istence of high-level southerlies over South America during

the austral summer, which were influenced by the Bolivian

high, and pointed out some similarities of this circulation pat-

tern with the well-known summer monsoon circulation over

south-east Asia (e.g., Dethof et al., 1999; Randel and Park,

2006).

The air over Araçatuba was influenced by numerousMCSs

that frequently formed over the southeast of South Amer-

ica (north Argentina, south Brazil, part of Paraguay and part

of Uruguay). These air masses were transported along the

STJ, often displaced by the high-level southerlies, to a region

within the Geophysica range. In addition, isolated thunder-

storms in the vicinity of Araçatuba were also observed by the

Brazilian radar network.

The eight local flights during the campaign can be divided

into 3 groups: 4 flights in almost pure tropical air, northwards

of the STJ on 12, 15, 17 and 18 February, 2 flights above and

within isolated thunderstorms on 4 and 5 February, and 2

flights on 1 and 8 February in air masses strongly affected by

the aged MCS and STJ. Because in contrast to the MCS, the

isolated convective systems such as those on 4 and 5 Febru-

ary are not resolved by the ECMWF large-scale analysis, we

focus our analysis on the flights on 1 and 8 February as ex-

amples of the STT and TST processes, respectively (Fig. 7

top and bottom). But first we describe the setup of CLaMS

used for this study.

3.2 Configuration of CLaMS

The high-resolution (50 km horizontally and up to 200m ver-

tically around the tropical tropopause) version of CLaMS as

www.atmos-chem-phys.net/7/3285/2007/ Atmos. Chem. Phys., 7, 3285–3308, 2007
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Fig. 7. Map of ECMWF potential vorticity (PV) at θ=360K on 1

February (top) and on 8 February, 12:00 UT (bottom). On these

2 days, signatures of stratosphere-troposphere exchange were ob-

served (thick white lines denote the flight tracks). Pink arrows

show the horizontal wind with highest values across the subtropi-

cal jet (STJ) surrounding the upper-level, quasi-stationary Bolivian

high (BH). The black lines are pressure isolines (in hPa). Top: Air

masses with low PV values (blue) east of Araçatuba are trapped in

the TTL by a cut-off low. These air masses had been separated

from the lowermost stratosphere, transported along the STJ and

mixed into the TTL (stratosphere-to-troposphere transport, STT).

Bottom: MCS over Argentina and South Brazil (white dashed con-

tours denote regions with ECMWF-H2O >25 ppmv on 7 February,

06:00 UT, i.e. about 32 h prior to the flight) transports air masses

from the boundary layer up to about 330–340K. Vertical mixing

along the STJ lifts these air masses up to about 360K, where cirrus

clouds, enhanced water vapor, and increased NO/NOy ratios were

observed (troposphere-to-stratosphere transport, TST).

described in the previous section is used to transport O3 and

N2O as passive tracers without any chemical change. The

model was initialized globally, between the earth’s surface

and ζ=1400K, for 20 November 2004, using MLS observa-

tions (O3, N2O) and the Mainz-2-D model above and below

ζ=400K, respectively (Grooß and Müller, 2007).

Two artificial tracers are used to mark air masses with dif-

ferent origins. In particular, the stratospheric tracer (ST) is

set to 100% at the initialization time in the domain defined by

ζ>380 in the tropics (i.e. within the latitude range between

20◦ S and 20◦ N) and by |PV|>2 PVU elsewhere. At the top

CLaMS level, ST is kept constant during the entire simula-

tion. The ST value of a given air parcel can change only due

to mixing and, consequently, this value quantifies the per-

centage of stratospheric air within this air mass. Similarly,

the boundary layer tracer (BT) is re-initialized every 24 h to

100% within the lowest layer with the thickness 1ζ=50K

that follows the orography. Thus, high BT values in the up-

per troposphere indicate a fast vertical transport driven by

convection.

To understand the impact of mixing on the transport of

trace species we run CLaMS in two configurations: without

mixing (i.e. transport only in terms of forward trajectories)

and with mixing by using mixing parameters described in

Sect. 2.4.

4 Stratospheric intrusion into the tropical tropopause

layer (TTL)

During the flight on 1 February, tracer signatures of a deep

stratospheric intrusion into the TTL were observed. This in-

trusion (cut-off low) was formed as a tongue of low PV (see

Fig. 7, top panel) that had been separated from the strato-

sphere and quasi-isentropically transported into the TTL on

a time scale of several days by a meandering and relatively

weak STJ.

Occasionally, the meandering STJ that surrounds the Bo-

livian high becomes unstable (usually when the Bolivian

high is displaced eastwards) due to a breaking Rossby wave

and, consequently, bifurcates into two branches. Whereas

the main branch follows the main eastward direction, a sec-

ondary branch flows anticlockwise around the Bolivian high

and mixes into the TTL.

Along the flight track (Fig. 8, top panel), spikes of en-

hanced ozone (black arrows) were observed several times by

the FOZAN instrument (black) clearly below the tropopause

(defined here as |PV|=2 PVU surface). These signatures

were successfully reproduced with CLaMS (colored line),

with better agreement than the assimilated ozone provided

by ECMWF (pink). The colors of the CLaMS line denote the

percentage of ST. CLaMS results with mixing switched off

(gray) strongly overestimate the observed ozone values, in

particular below the tropopause indicating too weak upward

(or too strong downward) transport in pure trajectory studies.

Alternatively, in reality, the stratospheric (high ozone) signa-

tures might be destroyed by mixing with tropospheric air, a

process that is neglected in a pure trajectory study.

The vertical ST distribution above and below the flight

track together with |PV|=2 PVU (tropopause) and Q=0

(clear sky radiative equilibrium) are shown in the bottom left

panel of Fig. 8. The spatial distribution of ST extends down

to about 500 hPa. The position of the meandering STJ (see

also Fig. 7) can be inferred from the isotachs of the horizontal

wind (light gray). A strong STT signal observed during this
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Fig. 8. Top: Ozone observations (FOZAN black, ECMWF pink) and CLaMS simulations colored with the percentage of the stratospheric

tracer ST within the observed air masses as modeled by CLaMS during the flight on 1 February. Bottom left: The vertical distribution of ST

along the flight track. Thin black and pink lines are p and θ -isolines, respectively. The tropopause defined as |PV|=2 PVU surface (violet),

theQ = 0 level (dark gray) and the isotachs (light gray) indicating the position of the STJ are also shown. Bottom right: FOZAN profiles as

observed during all local flights (gray) compared with the profile measured on 1 February and colored with ST.

flight can also be seen by a comparison of the ozone profiles

with all other profiles measured during the campaign (bottom

right panel of Fig. 8). The profiles measured on 1 February,

which are also colored with ST, show strong stratospheric

signatures around ζ=250K (≈500 hPa) with ozone values

around 100 ppbv (black arrow). This is a significantly higher

value than all other tropospheric ozone values measured dur-

ing the campaign (gray lines).

To some extent, the STJ still isolates stratospheric intru-

sion from the tropical air while the remnants of this intrusion

are mixed into the troposphere, mainly below the jet. Rela-

tively good agreement between the observed and simulated

filaments (black arrows in the top panel of Fig. 8) and the

position of the stratospheric remnants shows the ability of

CLaMS to reproduce small-scale structures within the TTL.

Overall good agreement between the simulated and ob-

served O3 and CH4 time series was achieved for all local

flights with correlation coefficients of 0.89 and 0.86, respec-

tively. The passively transported O3 slightly underestimates

the observed values in the lower stratosphere indicating that,

as expected in the tropics, chemical ozone production might

improve the agreement in full chemistry studies. Near the

tropopause, ozone assimilated by ECMWF shows astonish-

ingly good agreement with the FOZAN data. In the strato-

sphere, ECMWF-O3 overestimates the observation, with a

linearly increasing error from 5% around θ=380K up to

40% at θ=450K.

5 Troposphere-to-stratosphere transport along the sub-

tropical jet

The flight on 8 February permits a study of the reverse pro-

cess to that discussed above, namely the transport of tro-

pospheric air into the stratosphere (TST). During the out-

bound flight leg between 13:45 and 15:30 UT, the TTL was

penetrated at around θ≈360K (see Fig. 7, bottom panel).

The flight leg under consideration starts slightly below the

|PV|=2 PVU surface over Araçatuba and leads toward the
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Fig. 9. Flight on 8 February. Top: Potential temperature (black) and pressure (red) along the flight track. Bottom: Total water (yellow) and

water vapor (blue) as observed by the FISH instrument. Furthermore, observed (black) and simulated ozone with (red) and without mixing

(gray). In the beige (AB) and green (BC) segments of the flight (θ≈360K), signatures of stratosphere-troposphere exchange were observed

with an increasing stratospheric contribution. According to CLaMS, these contribution can be explained as a consequence of mixing within

the TTL disturbed by the STJ.

STJ core around the easternmost point of the flight track

with |PV|>3 PVU and wind velocities higher than 35m/s

(see also Fig. 13).

Along this leg (see Fig. 9), signatures of mixing were de-

tected with at first more tropospheric and then more strato-

spheric contribution observed in the beige (AB) and in the

green (BC) colored time intervals, respectively. In particular,

enhanced values of total water (up to 30 ppmv, yellow) and

water vapor (up to 15 ppmv, blue) were detected by the FISH

instrument at a pressure level of 125 hPa, i.e. slightly above

θ=360K. A positive difference between the total water and

water vapor (derived from the temperature and 100% ice sat-

uration assumption) indicates the existence of cirrus clouds.

This signature can be seen twice, shortly before 14:00 and a

small spike after 15:00 UTC.

Surprisingly, after about 14:30 UT (BC), enhanced ozone

values (up to 150 ppbv, FOZAN) were detected (black), in-

dicating increasing stratospheric influence. This transition

from the tropospheric (AB) to more stratospheric O3 mixing

ratios (BC) is also reproduced by CLaMS simulations with

mixing (red). On the other hand, pure trajectory calculations

(gray) significantly overestimate the observed ozone values

showing that such calculations do not correctly represent the

upward transport.

The simultaneous presence of the tropospheric and strato-

spheric signatures in the air masses sampled on February 8

(and February 1) can also be seen in Fig. 10 where the pro-

files of the total water (a) as well as the correlations of ozone

with total water (b) and with NO/NOy (c) are compared with

other pure tropical flights (black versus gray). Thus, signif-

icantly higher values of H2O were observed within the TTL

affected by the STJ (black) than within the tropical TTL far

away from the STJ (gray). In particular, as can be deduced

from the ozone/total water correlation, the air masses sam-

pled along the entire ABC leg were influenced by mixing be-

tween the troposphere and stratosphere (relatively strong de-

viation of the observed correlations from an ideal, unmixed,

L-shaped correlation) with much higher stratospheric influ-

ence along the BC than along the AB part of the leg.

Atmos. Chem. Phys., 7, 3285–3308, 2007 www.atmos-chem-phys.net/7/3285/2007/



P. Konopka et al.: Contribution of mixing to upward transport across the TTL 3299

Fig. 10. Profiles of total water (a), correlations of ozone with total water (b) and with NO/NOy (c) during the flight on 8 February and 1

February (black) compared with pure tropical flights far away from fresh convective systems (gray). The contributions from the AB and BC

flight segments are colored beige and green, respectively.

Furthermore, comparatively high ratios of NO/NOy (30–

55%) were observed along the entire ABC segment that in-

dicates contributions of relatively fresh lightning. Based on

observations around 200 hPa, Schumann et al. (2004) report

that ratios between 30 and 50% are signatures of lightning

no older than 3 h. Because the lifetime of NOx at 125 hPa

is longer by about a factor 10 than at 200 hPa (Tie et al.,

2001, 2002), the observed NO/NOy ratios may be typical of

an elapsed time of the order of few days. Using trajectory

analysis, we now discuss the origin of these air masses.

5.1 Trajectory analysis

A common way to trace back the origin of the sampled air

masses is to use backward trajectories starting from the flight

track (see Fig. 11, top panel). Here, the positions and the

ECMWF H2O mixing ratios along 3-day backward trajec-

tories are shown. The trajectories were calculated using ζ -

coordinates and the CLaMS trajectory module driven by the

6-h ECMWF analysis data.

The trajectories show high ECMWF H2O values of about

50 ppmv about 30 h before the flight whereas about 40 h prior

the flight H2O values of less than 7 ppmv were found in

these air masses. Furthermore, the potential temperature did

not significantly change along these trajectories (the abso-

lute variation is less than 2K) indicating an almost isen-

tropic transport. Because the trajectories do not descend be-

low ≈200 hPa, the diagnosed high ECMWF H2O values are

probably caused by the sub-grid parameterization of convec-

tion in the ECMWF model.

Similar results were also found with the FLEXPART

model (Ren et al., 2007) and with LAGRANTO trajectories

driven by 3-h ECMWF data (Wernli and Davies, 1997), even

if some of those backward trajectories reached the 220 hPa

level. Furthermore, for all flight legs on 1, 4, 5 and 8 Febru-

ary with 350<θ<380, the corresponding backward trajecto-

ries, calculated both with CLaMS and LAGRANTO, do not

descend below ≈300 hPa for the previous 5 days, even on 4

and 5 February when the observed air masses were strongly

influenced by fresh convection. The small discrepancies be-

tween CLaMS and LAGRANTO likely originate from the

differences in the applied ECMWF data (6- versus 3-h fre-

quency) rather than from the differences in the trajectory ad-

vection schemes.

The vertical displacement of the backward trajectories

changes significantly if their start positions are shifted down

below the flight track by 25K. In the bottom panel of Fig. 11,

the horizontal coordinates of the 3-day backward trajectories

are shown, which were initialized 25K below the flight leg

ABC on 8 February (i.e. 25K below the beige and green time
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Fig. 11. 3-day backward trajectories starting on 8 February 2005 between 13:45 and 15:30 UT from the AB (beige) and BC (green) flight

legs (top) or 25K below these flight legs (bottom). Top: ECMWF H2O interpolated along these trajectories. Bottom: 1θ experienced by

the air masses along the backward trajectories starting 25K below the flight track. Positive (red) and negative (blue) values correspond to

up- and downward motion of air with increasing time. The gray footprints are places where the trajectories cross the 400 hPa level. In the

satellite pictures (GOES), fresh convective clouds could be found in the same region (see Fig. 12).

segments). The positive (negative) values of 1θ along the

trajectories denote their total ascent (descent) with increasing

time. The gray footprints show the positions where these tra-

jectories cross the 400 hPa level and, in the following, these

positions are interpreted as regions where convection lifted

the corresponding air masses. The age of convection can be

derived from the trajectory length (see legend in Fig. 11) and

varies between 30 and 70 h for the southern- and western-

most footprints, respectively.

Such an interpretation of the footprints is supported by the

infrared (chanel 4) GOES-East satellite pictures (Fig. 12),

which show a convective cloud covering 53, 40, and 30 h

before the flight at approximately the same locations as in-

ferred from the trajectory calculations. Thus, it seems that

two MCS, the older one over the northeast of south of Brazil

and part of Uruguay (beige) and the younger one over Ar-

gentina (green), contributed to the tropospheric signatures in

the respective AB and BC parts of the considered flight leg.

A different origin of these air masses is also manifested in
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a discontinuity in the measured time series of water vapor

around 14:30 UT (see Fig. 9). This discontinuity can also be

seen in the time series of temperature (first part of the leg is

colder by ≈3K) and the relative humidity (not shown).

5.2 Contribution of mixing

Thus, the question arises of the reason that trajectory analysis

can explain the convection-induced tropospheric signatures

at most up to θ≈340K but not the observed relatively fresh

tropospheric signatures (enhanced NO/NOy ratio and cirrus

clouds) found slightly above 360K. As a first hypothesis, it

is possible that ζ̇ derived from the large-scale ECMWF ver-

tical velocity are underestimated in regions affected by con-

vection.

To some extent, this hypothesis is supported by observa-

tions of CO by the COLD instrument on 4 February with a

maximum mixing ratio of ≈140 ppbv extending up to about

360K in air masses within and slightly above an isolated con-

vective cell (unfortunately, there are no observations of CO

on 1 and 8 February and the quality of the CLaMS CO dis-

tribution is strongly limited by a very uncertain data base of

CO sources, in particular in South America). Within CLaMS,

the highest impact of convection can be defined as the high-

est level reached by undiluted values of BT (i.e. ≈100%).

For all flights when CO is available, this level was found by

about θ=350K, i.e. about 10K below the highest convective

outflow derived from CO observations.

However, the underestimation of the convective outflow

by 1θ≈10K does not completely explain the discrepancy

between the backward trajectory analysis that started 25K

below the flight level and the observed, relatively fresh tropo-

spheric signatures at θ≈360K. In the remaining part of this

section, we show that mixing, in particular that implemented

in CLaMS, has the potential to close this gap.

To explore this hypothesis, an additional CLaMS simula-

tion was performed, with BT re-initialized 3 days before the

flight to 100% and 0 above and below 400 hPa, respectively.

In this way, we redefine BT as a tropospheric tracer and ask

if during the following 3 days convection and mixing can lift

this tracer up to about θ=360K. The results are plotted as a

curtain along the flight track in Fig. 13.

Here, BT extends well above θ=335K, i.e. well above the

maximum of the upward transport as inferred from the pure

trajectory analysis shown in Fig. 11. In particular, the BL sig-

nature extends up to the AB part of the leg around 14:00 UT

(beige), but never reaches the BC part of the leg (green) get-

ting no closer than 10K below the flight level at 14:45 UT.

The position of the first BT signature (beige arrow) roughly

coincides with the position of the cirrus clouds (yellow in the

beige part of the flight track in Fig. 9).

In addition, the distribution of the stratospheric tracer

(not shown) that can be approximated by ST≈100%-BT co-

incides with the increasing stratospheric properties of the

sampled air masses as the Geophysica comes closer to the

53 hours before

40 hours before

30 hours before 

Fig. 12. High clouds indicating convection as detected by the GEOS

satellite 53 (top), 40 (middle) and 30 h (bottom) prior to the flight

on 8 February.

STJ (illustrated here by the isotachs of the horizontal wind,

light gray). The aircraft crosses the |PV|=2 PVU tropopause

around 14:00 UT (the violet line denotes the tropopause

in Fig. 13), with an increasing stratospheric character of

the sampled air along the BC part of the flight leg. Thus,
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Fig. 13. Vertical distribution of the boundary layer tracer (BT) along the flight track on 8 February 2005. Here, BT was re-initialized 3 days
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(|PV|=2 PVU, violet), theQ=0 level (dark gray) and the isotachs (light gray) indicating the position of the STJ are also shown.

in agreement with observed and simulated O3 time series

(Fig. 9), the stratospheric contribution increases during the

considered flight leg as the Geophysica approaches the jet

core. At the end of the second part of the leg (point C),

slightly above the tropopause, BT and ST tracers transported

over the entire period of 3 months show the weakest tropo-

spheric impact and the strongest contribution of air originat-

ing in the lowermost stratosphere, respectively.

We conclude that vertical and isentropic mixing as imple-

mented in CLaMS goes beyond the pure trajectory calcu-

lations and explain, at least qualitatively, the observed sig-

natures in the TROCCINOX observations. In the following

section, we will discus some additional arguments support-

ing this hypothesis.

6 Mixing-driven transport in the TTL

To support the argument that mixing in CLaMS does play

a crucial role in lifting tropospheric air from the convective

outflow around 350K up to the tropical tropopause around

380K, we now discuss in Fig. 14 the horizontal (top row)

and zonally averaged vertical (bottom row) distributions of

BT after more than 3 months of transport (108 days) with

and without mixing.

In the case without mixing, pure advective transport along

the trajectories occurs. The trajectories are calculated in

ζ−coordinates, i.e. by the use of hybrid vertical velocities ζ̇ .

The horizontal distributions in the top row of Fig. 14 show

air parcels within the layer around ζ=380K. The beige lines

are the isotachs of the total and zonal wind in the horizontal

and vertical cross sections, respectively, and illustrate the po-

sitions of STJ on the last day of the simulation period (i.e. on

7 March 2005). The blue lines in the bottom row indicate the

position of the tropopause and are inferred from the |PV|=2–

4 isolines in the extratropics and θ=380K in the tropics.

The large white gaps where air parcels are absent in the

left top panel of Fig. 14 illustrate that insufficient number of

air parcels ascending in the tropics, or, in other words, that

the upward transport driven by convection (from ECMWF)

and by radiation (clear sky) is too weak to transport tropo-

spheric species up to the tropical tropopause at θ≈ζ=380K

(we later discuss that these white gaps are due to an in-

valid continuity equation in the ζ−coordinate system). By

contrast, the full CLaMS simulations with mixing (top right

panel of Fig. 14) show a clear, filamentary signature of up-

ward transport within the tropics laterally confined between

the northern and southern STJ and with highest BT values in

the tropics over Indonesia and south of the equator over the

western Pacific.

The zonally averaged vertical distribution of the BT tracer

shown in the bottom right panel of Fig. 14 also illustrates

a clear signature of mixing if compared with the results of

a pure trajectory transport (bottom left). The vertical mix-

ing strongly affects the TTL region above ζ≈360K. Further-

more, a stronger convective activity and a weaker STJ in the

summer hemisphere effectively fill the Southern Hemisphere

lowermost stratosphere with tropospheric air whereas in the
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Fig. 14. Horizontal distribution of CLaMS boundary layer tracer (BT) at ζ=380K (top row) and its zonally averaged vertical distribution

(bottom row) after more than 3 months of transport (108 days) on 7 March 2005 calculated without (left) and with (right) mixing.

Northern Hemisphere a stronger STJ combined with an en-

hanced diabatic descent into the lowermost stratosphere hin-

der an effective TST.

The meridional distribution of the fraction of CLaMS air

parcels affected by mixing and averaged over the entire sim-

ulation time is shown in the top panel of Fig. 15. The white

and gray lines denote the mean wind isotachs and the mean

Q=0 line, respectively. The blue lines denote the mean

tropopause calculated as for Fig. 14. All these lines are de-

rived from the meteorological data averaged over the entire

simulation time of 108 days.

Thus, a stronger STJ in the Northern Hemisphere is as-

sociated with a higher mixing intensity both below the jet

and on its tropical side. Remarkably, the whole TTL, i.e. the

region confined by the jets and θ -values between 350 and

420K, is affected by mixing even if the largest contribution

can be found on the tropical side of the STJs. Note that con-

vection in the tropics below ≈340K is described in CLaMS

as an advective part of transport (i.e. in terms of trajecto-

ries and without mixing) and, consequently, does not signifi-

cantly contribute to CLaMS mixing.

It should be emphasized that our concept of mixing-

driven transport, in particular in the vicinity of the jets, does

agree with the general understanding of STJ as seasonally-

dependent barriers for isentropic transport (Haynes and

Shuckburgh, 2000). This effect, which hinders horizontal

transport of constituents from or into the TTL, is manifested

in steep isentropic gradients of tracers perpendicular to the jet

axis which form on a time scale of several weeks. This prop-

erty can be seen in the meridional distribution of BT shown

in the bottom right panel in Fig. 14 with a more permeable

summer southern STJ in comparison to the northern STJ.

Although the highest mixing intensity in CLaMS is found

on the tropical side of the winter STJ (see top panel of

Fig. 15), such a jet, mainly due to a strong zonal orientation,

serves as a very effective barrier for the isentropic transport.

Conversely, a weak meandering summer STJ constitutes only

a weak barrier for horizontal transport despite smaller mixing

rates diagnosed in its vicinity. Thus, mixing through the bar-

rier weakening the isentropic tracer gradients across the bar-

rier does not necessarily follow the high local mixing rates

diagnosed on both sides of the barrier.

One has to distinguish two different features of transport:

the net transport across the barrier occurring on a time scale

of several weeks and the local mixing rates on both sides

of such a barrier occurring on a time scale of hours and ho-

mogenizing the tracer distributions separated by the barrier.

Here, these two features are anti-correlated. On summary,

the seasonal variability of the vertical mixing and horizonal

permeability along and across the STJs are marked by black

arrows in in the bottom right panel of Fig. 14 and in Fig. 15.
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Fig. 15. Mean mixing intensity plotted as the percentage of air parcels affected by mixing (top) and the mean residual of the continuity

equation R calculated in ζ -coordinates (bottom) and zonally averaged over the entire simulation time (108 days). The isotachs of the wind

(top: white, bottom: light gray), theQ=0 line (dark gray) and the lowest temperature isolines (dashed black) are also shown. The blue lines

approximate the tropopause.

Furthermore, even if the lowest mean temperatures (thick

dashed black lines in Fig. 15) are symmetrically located

over the equator, their position with respect to the jets is

strongly asymmetric. Thus, despite a stronger vertical mix-

ing at the tropical side of the Northern Hemisphere STJ, wa-

ter vapor can be more effectively condensed above this region

than during the upward transport occurring in the vicinity of

the Southern Hemisphere STJ. This means that sufficiently

strong convection interacting with the summer STJ could be

a favored path for an effective upward transport of water va-

por.

7 Discussion

Motivated by our simulations and comparison with the ex-

perimental data, we critically discuss now the main hypoth-

esis of this paper stating that mixing, in particular the mix-

ing scheme implemented in CLaMS, can effectively trans-

port trace gases across the TTL and, consequently, has the

potential to close the gap between the main convective out-

flow and the radiation-driven upward transport in the tropical

stratosphere. We start our discussion with the analysis of the

vertical velocity ζ̇ quantifying the advective part of transport

and with the analysis of the interaction of ζ̇ with CLaMS

mixing describing the diffusive part of transport.

Atmos. Chem. Phys., 7, 3285–3308, 2007 www.atmos-chem-phys.net/7/3285/2007/



P. Konopka et al.: Contribution of mixing to upward transport across the TTL 3305

To some extent the enhanced mixing in CLaMS around

θ=380K results from the necessity of filling the “white”

regions in the left top panel of Fig. 14 with new air

parcels (note that additional interpolations mean adding new

air parcels which lead to additional mixing in the model

(Konopka et al., 2004)). This can be understood as a con-

sequence of the violation of the continuity equation caused

by the use of hybrid vertical velocities where approximately

above 300 hPa the ECMWF vertical p-velocities (which, by

construction, fulfill the continuity equation) are gradually

replaced by the vertical velocities calculated independently

from a radiation scheme.

Because in the parts of the UT/LS region which are not af-

fected by convection, the vertical velocities are, at least, two

orders of magnitude smaller than the horizontal wind, their

values derived from the continuity equation are strongly af-

fected by the limited accuracy of the horizontal wind. Typi-

cal horizontal and vertical velocities in the UT/LS region are

of the order of 10 and less than 0.01m/s, respectively. Thus,

horizontal wind accuracy higher than 0.1% would be neces-

sary to resolve such small vertical winds.

This is the reason why most of the stratospheric CTMs like

SLIMCAT (Feng et al., 2005) or CLaMS or trajectory-based

studies in the stratosphere (Schoeberl and Newman, 1995;

Rex et al., 1998) utilize vertical velocities calculated from

a radiation scheme and why these velocities in the UT/LS

region, if derived from the horizontal wind via the continuity

equation, are used only in a statistical sense, e.g. in terms of

monthly averaged values (Norton, 2002) or by appropriate

climatologies of trajectories (Stohl, 2000; Fueglistaler et al.,

2004).

In the bottom panel of Fig. 15, the mean residual R of

the continuity equation in the ζ -coordinates (i.e. defined as

the deviation of the continuity equation from zero) aver-

aged over the simulated period is shown (see Holton, 1992,

Eq. (4.31) with σ=−g−1∂p/∂ζ , σ -mass density in ζ coordi-

nates). High absolute values of R identify regions where the

velocity field does not fulfill the continuity equation. In par-

ticular, strong negative values of R as diagnosed in the TTL

region (Fig. 15) are caused by too weak upwelling or too

strong poleward transport. This can also be deduced from

the transport at θ=360K (not shown), where the air parcels

slowly move away from the tropics, polewards, even if θ̇≈0

is valid at this surface.

A correction of the horizontal winds that does restore the

validity of the continuum equation (and closes the white gaps

in the left top panel of Fig. 14) can be achieved (B. Legras,

personal communication), but such a correction is very small

in comparison with the real horizontal winds and would not

produce additional vertical transport across the TTL (in a

CLaMS configuration without mixing). Furthermore, the

intensity of the deformation-induced CLaMS mixing would

not significantly change if these white gaps were filled with

air parcels because the number of air parcels necessary to

close these gaps is only a very small fraction (≈5%) of all the

mixing events induced by the flow deformations (not shown).

Furthermore, sensitivity studies with respect to the im-

pact of the choice of pr (critical pressure level, below

pr=100 hPa we gradually replace the radiation-driven trans-

port in the stratosphere by the ECMWF vertical velocities)

show that by shifting pr to higher values (pr=300 hPa), we

suppress the effect of convection and, in this way, we in-

crease the gap between the main convective outflow and the

stratosphere. On the other hand, by shifting pr to lower val-

ues (pr=10 hPa), the vertical transport across the TTL can

occur without mixing (i.e. in terms of pure trajectory calcu-

lation) due to a decreasing residual error R in the continuity

equation.

Comparison with the experimental data in the way dis-

cussed in previous sections show for all three choices of pr

that simulations with mixing describe much better the exper-

imental data than the corresponding distributions calculated

without mixing. This sensitivity study also indicates that,

at least in the model, diffusive rather than advective trans-

port (that is approximately equal zero) dominates the vertical

distribution of species in the TTL. Furthermore, the ozone

distributions calculated with CLaMS along the Geophys-

ica flight tracks clearly overestimate and slightly underesti-

mate the observations for pr=300 and 10 hPa, respectively

(i.e. the tropospheric influence is too weak for pr=300 hPa

and slightly too strong for pr=10 hPa). Thus the preferred

choice is pr=100 hPa.

The question that still arises is, what is the mechanism that

pushes the air parcels across the TTL if only 3-D ECMWF

velocities (which are mass-conserving by construction) are

used (as done e.g. by Fueglistaler et al., 2004). Consider-

ing our previous discussion, we think that probably slightly

too high meridional, poleward velocities “pump”, via the

vertical velocities derived from the continuity equation, the

air parcels upwards across the TTL. This can be a conse-

quence of a bias in the assimilation system near the tropi-

cal tropopause but other explanations are also possible. On

the other hand, the advective upward transport can occur at

the same places where the diffusive transport diagnosed by

CLaMS but we can also expect some differences. These dif-

ferences, if present, would help to find out which transport

mechanism is correct. We will analyze this point in the fu-

ture.

Consequently, the diffusive fluxes in CLaMS have the po-

tential to transport trace gases across the tropopause even

if the advective fluxes point in opposite direction (see Ap-

pendix). Such a diffusive transport can be expected ei-

ther isentropically across the STJs into the lowermost strato-

sphere or vertically into the stratosphere across the TTL,

preferably along the STJs. It should be emphasized that the

real physical mixing occurs on much smaller scales than the

scales resolved by CLaMS (and most other global models, if

not all) and is (probably) caused by such events like breaking
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gravity or Kelvin waves or some other sources of instabilities

which occur in the atmosphere.

In our approach, we follow the idea that such unresolved

processes are driven by deformations in the large-scale flow

(shear and strain). This idea that was first postulated by

Smagorinsky (1963) couples mixing (that occurs on spa-

tially unresolved scales) with gradients of the large-scale

flow D∼∇u. In contrast to Eulerian models where (numer-

ical) mixing in the form of numerical diffusion is propor-

tional to the flow velocity, i.e. D∼u (Courant et al., 1928),

the CLaMS parameterization of mixing is nothing else but

the Lagrangian realization of the D∼∇u assumption.

To summarize, there are several options for reevaluating

the transport processes in the TTL: either the mean convec-

tive outflow described in terms of the ECMWF large-scale

vertical velocities is higher than 350K and has to be param-

eterized by including sub-grid convection as discussed, for

example in Tiedtke (1989), or the clear sky radiation has to

be extended by accounting for the effect of thin cirrus clouds

in the way proposed by Corti et al. (2006), or the hypothesis

of the mixing-driven transport as proposed in this paper is, at

least, a mechanism that effectively contributes to the lifting

of the trace gases across the TTL.

8 Conclusions

The mixing-driven transport from the mean convective out-

flow across the TTL up into the stratosphere offers an alterna-

tive path for the troposphere-to-stratosphere transport (TST).

Both the measurements on board the high altitude research

aircraft Geophysica (ozone, water vapor, NO, NOy, CH4 and

CO) in the altitude range spanning the TTL regions and the

CLaMS studies with and without mixing support this idea in

the sense that the model with mixing parameterization pro-

duces more realistic tracer distributions compared with the

model configuration without mixing. The mixing-induced

transport simulated with CLaMS occurs preferentially in re-

gions with high vertical shear mainly found in the vicinity

of the subtropical jets and, to some extent, in the outflow of

the large-scale convection. Even when a strong winter sub-

tropical jet acts as an effective barrier for isentropic trans-

port, enhanced vertical transport can occur within its tropi-

cal flanks. Conversely, a weak summer jet can be character-

ized by a higher isentropic permeability and a weaker vertical

transport. TST seems to be most effective if the outflow of

mesoscale convective systems reaches the region penetrated

by the subtropical jet.

Appendix A

Mass transport versus tracer transport

In order to understand differences between the transport

of (passive) trace gases and that of the background atmo-

sphere, let us consider m tracers with number densities ni

and volume mixing ratios µi given as ni=µin, i=0, ..., m

where n=n0 (µ0=1) denotes the total number density of all

molecules. Generally, one expects that on a sufficiently small

but still macroscopic scale (i.e. containing a sufficiently large

number of molecules) where diffusion processes can be ne-

glected, the continuum equation describing the conservation

of the number densities ni is given by

∂tni + ∇ · (niu) = 0, i = 0, ..., m (A1)

where u denotes the flow velocity on the spatial scale con-

sidered. Separating u into its mean part ū, e.g. the ECMWF

velocity fields valid on the spatial resolution of the model of

about 100 km, and the fluctuation part u′ describing the un-

resolved subgrid processes such as gravity waves, Eq. (A1)

can be rewritten as (i.e. following the Raynolds averaging

procedure):

∂tni + ∇ · (ni ū + niu
′) = 0. (A2)

Thus, the total flux j=ni ū+niu
′ consists of the mean flux

ū=ni ū and of the additional flux, j′i=niu
′. The latter can

be interpreted as a turbulent mass transport that can be pa-

rameterized by Fick’s law, j′i=nD∇µi (D-diffusivity, see,

e.g. Hall and Plumb (1994)). Consequently, the transport of

all species can be described by

∂t (nµi) + ∇ · (nµi ū + nD∇µi) = 0, i = 0, ..., m. (A3)

In particular, the transport of all air molecules n reduces with

i=0 and ∇µ0=0 to

∂tn + ∇ · (nū) = 0 (A4)

Thus, the diffusive fluxes can change the tracer distributions

ni , without any change of the total number density n of all air

molecules. Furthermore, it can occur that the diffusive flux

of a tracer i, ni ū′, has the opposite direction and a higher

absolute value than the advective flux ni ū.

This is, for example, the case within the TTL above the

main convective outflow around θ=350K and below the

Q=0 level around 360K where, as discussed in this pa-

per, the upward transport driven by vertical mixing can out-

weigh the large-scale, radiation-dominated, advective down-

ward transport.
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