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NIC Series, Vol. 36, ISBN 978-3-9810843-2-0, pp. 99-102, 2007.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume36



Dimensionality Reduction Techniques for Protein Folding
Trajectories

T. Eitrich, S. Mohanty, X. Xiao, and U. H. E. Hansmann

John von Neumann Institute for Computing,
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In our work we analyze large and high dimensional data from protein folding simulations. The
main goals are to extract the underlying dimensionality, tofind a small number of features
that describe the data with high accuracy and to find interesting clusters in the data: in this
work we treat this as a problem of dimensionality reduction.Dimensionality reduction aims
to find a mapping of the original space into a space of a few interesting dimensions, which the
user then can use for interpretation and analysis. We study modern dimensionality reduction
techniques and combine them with promising distance measures, suitable for the description of
dissimilarities between the data points generated by the package ProFASi - a Protein Folding
and Aggregation Simulator.

1 Introduction

Understanding the folding of proteins is one of the most challenging problems in compu-
tational biology. We refer to protein folding as the processby which a protein assumes
its native state. Protein folding trajectory data is high dimensional and thus hard to inter-
pret after the simulation. Dimensionality reduction methods, that map the data into a new
space of fewer dimensions while preserving as much relevantinformation as possible, can
be used to find meaningful low dimensional structures in the original high dimensional
datasets.

Several techniques do exist, which we may divide into

• linear methods, like principal component analysis (PCA)6 and multi dimensional scal-
ing (MDS)2, and

• nonlinear methods, like locally linear embedding (LLE)8, kernel PCA9 and Isomap10.

We refer to this methods as unsupervised embedding algorithms. Supervised embedding
methods, which take additional properties into account, are discussed in ref 5.

2 Material and Methods

Our dataset for this work consists of a folding trajectory ofa49 residue alpha-beta protein
with PDB id 2GJH, generated using the program package ProFASi: a Protein Folding and
Aggregation Simulator4. Each data point represents the conformation of the molecule at a
certain Monte Carlo time. Each successive pair of data points are separated by1000 Monte
Carlo sweeps. For this analysis, we have used1000 such points, which were selected to
span one particular folding event in the simulations.

We have used two dimensionality reduction methods, MDS and Isomap. The following
are the main steps in the Isomap10 method.
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• Compute dissimilarities between all points.

• Construct a neighborhood graph according to the number of neighborskn

• Based on the neighborhood information, compute shortest paths between all points.

• Embed the data into a newd-dimensional space using an eigenvalue method.

In the case of MDS, only the first and the last step need to be done (no neighborhood
parameterkn), because the dissimilarity measure is assumed to be uniformly good for all
pairs of points.

The success of dimensionality reduction methods highly depends on a reasonable
choice of the dissimilarity measure, since these methods use distances between objects
instead of the objects themselves. Thus, any information wewant to preserve must be rep-
resented by the distance measure. In our study we have used and compared three different
measures, i.e.

• the minimized root mean square deviation (RMSD) between atomic coordinates, as it
was used in ref 3,

• the RMSD of the dihedral angels, as introduced in ref 1, and

• a two dimensional structural similarity measure based on dihedral angle distributions
and a Fourier transformation process, described in ref 7.

3 Results and Discussion

In our tests we have applied different dimensionality reduction techniques as well as vari-
ous distance measures for our folding trajectory dataset. We observed, that both, MDS and
Isomap (using small neighborhood sizes) lead to interesting embedding dimensions. We
observed, that all three distance measures give results which fit to some of the characteris-
tics of the simulation, like energy or RMSD to the native state.

In Fig. 1, we show results using Isomap with10 neighbors and the atomic RMSD
distance measure. Plotted is the RMSD to the native state against the first embedding
dimension - a descriptor for how well the protein has folded in the simulation. Please note,
that the colors in all pictures express the time steps. In Fig. 2, results using MDS with the
dihedral RMSD distance measure are given. Plotted is the total energy value against the
first embedding dimension. In Fig. 3, MDS together with the Fourier measure was applied.
Given is the helix content against the first embedding dimension.

So far we could not observe huge differences between the linear MDS and the nonlinear
Isomap, which leads us to the conclusion, that for the case ofprotein folding trajectories,
we have examined, the choice of a reasonable distance measure also leads to adequate
results for linear embedding methods.

4 Summary and Future Work

In our work we studied linear and nonlinear dimensionality reduction techniques. Our
application field is protein folding, for which we try to find and analyze new embedding
coordinates. Future work will concentrate on the analysis of embedding data. Especially,
we will use supervised methods to cluster and classify embedded data.
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Figure 1. First embedding coordinate is correlated with theRMSD to native value.
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Figure 2. First embedding coordinate is correlated with theenergy.
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Figure 3. First embedding coordinate is correlated with thehelix content.
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4. A. Irbäck and S. MohantyProFASi: a Monte Carlo simulation package for protein
folding and aggregation. J. Comput. Chem.27, 1548–1555, 2006.

5. T. Iwata, K. Saito, N. Ueda, S. Stromsten, T.L. Griffiths, and J.B. TenenbaumParamet-
ric embedding for class visualization. Advances in Neural Information Processing
Systems17 (NIPS2004), 617–624, 2005.

6. I.T. JolliffeDiscarding variables in a principal component analysis. I:artificial data.
Applied Statistics21, 160–173, 1972.

7. N. Kandiraju, S. Dua, and S. ConradDihedral angle based dimensionality reduction
for protein structural comparison. Proc. Conf. ITCC2005, 14–19, 2005.

8. S.T. Roweis and L.K. Saul.Nonlinear dimensionality reduction by locally linear
embedding. Science290(5500), 2323–2326, 2000.
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