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In our work we analyze large and high dimensional data frootgim folding simulations. The
main goals are to extract the underlying dimensionalityfind a small number of features
that describe the data with high accuracy and to find inteigstiusters in the data: in this
work we treat this as a problem of dimensionality reducti@imensionality reduction aims
to find a mapping of the original space into a space of a fewestiag dimensions, which the
user then can use for interpretation and analysis. We stumiem dimensionality reduction
techniques and combine them with promising distance meassuitable for the description of
dissimilarities between the data points generated by thkagge ProFASI - a Protein Folding
and Aggregation Simulator.

1 Introduction

Understanding the folding of proteins is one of the mostlengling problems in compu-
tational biology. We refer to protein folding as the prockbgswhich a protein assumes
its native state. Protein folding trajectory data is higmeinsional and thus hard to inter-
pret after the simulation. Dimensionality reduction metbahat map the data into a new
space of fewer dimensions while preserving as much relentormation as possible, can
be used to find meaningful low dimensional structures in thgireal high dimensional
datasets.
Several techniques do exist, which we may divide into

e linear methods, like principal component analysis (PCa#jd multi dimensional scal-
ing (MDSY, and

¢ nonlinear methods, like locally linear embedding (LEfRernel PCA and Isomaff.

We refer to this methods as unsupervised embedding algwsitiSupervised embedding
methods, which take additional properties into accouetdéscussed in ref 5.

2 Material and Methods

Our dataset for this work consists of a folding trajectoradd residue alpha-beta protein
with PDB id 2GJH, generated using the program package ProBA%otein Folding and
Aggregation Simulatdr Each data point represents the conformation of the madeatLea
certain Monte Carlo time. Each successive pair of data pairg separated Y00 Monte
Carlo sweeps. For this analysis, we have usg@D such points, which were selected to
span one particular folding event in the simulations.

We have used two dimensionality reduction methods, MDS sohap. The following
are the main steps in the Isomé&method.
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e Compute dissimilarities between all points.
e Construct a neighborhood graph according to the numberighbersk,,
e Based on the neighborhood information, compute shortélssetween all points.

e Embed the data into a nedvdimensional space using an eigenvalue method.

In the case of MDS, only the first and the last step need to be ¢om neighborhood
parametek:,,), because the dissimilarity measure is assumed to be omifgood for all
pairs of points.

The success of dimensionality reduction methods highlyeddp on a reasonable
choice of the dissimilarity measure, since these methodslistances between objects
instead of the objects themselves. Thus, any informatiowa# to preserve must be rep-
resented by the distance measure. In our study we have udebanmpared three different
measures, i.e.

e the minimized root mean square deviation (RMSD) betweem@tooordinates, as it
was used in ref 3,

e the RMSD of the dihedral angels, as introduced in ref 1, and

e atwo dimensional structural similarity measure based bedlial angle distributions
and a Fourier transformation process, described in ref 7.

3 Results and Discussion

In our tests we have applied different dimensionality reductechniques as well as vari-
ous distance measures for our folding trajectory datasetohgerved, that both, MDS and
Isomap (using small neighborhood sizes) lead to interggimbedding dimensions. We
observed, that all three distance measures give resulehvihto some of the characteris-
tics of the simulation, like energy or RMSD to the native stat

In Fig. 1, we show results using Isomap with neighbors and the atomic RMSD
distance measure. Plotted is the RMSD to the native statesighe first embedding
dimension - a descriptor for how well the protein has foldethe simulation. Please note,
that the colors in all pictures express the time steps. InZEigesults using MDS with the
dihedral RMSD distance measure are given. Plotted is tla¢ ¢oergy value against the
first embedding dimension. In Fig. 3, MDS together with theer measure was applied.
Given is the helix content against the first embedding dinoens

So far we could not observe huge differences between tharlMBS and the nonlinear
Isomap, which leads us to the conclusion, that for the cageatéin folding trajectories,
we have examined, the choice of a reasonable distance reealsorleads to adequate
results for linear embedding methods.

4 Summary and Future Work

In our work we studied linear and nonlinear dimensional@guction techniques. Our
application field is protein folding, for which we try to finchd analyze new embedding
coordinates. Future work will concentrate on the analybmnabedding data. Especially,
we will use supervised methods to cluster and classify eniedata.
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Figure 1. First embedding coordinate is correlated withRIMSD to native value.
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Figure 2. First embedding coordinate is correlated withethergy.
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Figure 3. First embedding coordinate is correlated withhtslex content.
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