001     58131
005     20240610120029.0
024 7 _ |2 pmid
|a pmid:17712520
024 7 _ |2 DOI
|a 10.1140/epje/i2006-10220-0
024 7 _ |2 WOS
|a WOS:000249461500002
024 7 _ |a altmetric:21817657
|2 altmetric
037 _ _ |a PreJuSER-58131
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |a Ripoll, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)130920
245 _ _ |a Hydrodynamic screening of star polymers in shear flow
260 _ _ |a Berlin
|b Springer
|c 2007
300 _ _ |a 349 - 354
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a European Physical Journal E
|x 1292-8941
|0 1985
|v 23
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The mutual effects of the conformations of a star polymer in simple shear flow and the deformation of the solvent flow field are investigated by a hybrid mesoscale simulation technique. We characterize the flow field near the star polymer as a function of its functionality (arm number) f . A strong screening of the imposed flow is found inside the star polymer, which increases with increasing f . To elucidate the importance of hydrodynamic screening, we compare results for hydrodynamic and random solvents. The dependence of the polymer orientation angle on the Weissenberg number shows a power law behavior with super-universal exponent --independent of hydrodynamic and excluded-volume interactions. In contrast, the polymer rotation frequency changes qualitatively when hydrodynamic interactions are switched on.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Diffusion
650 _ 2 |2 MeSH
|a Elasticity
650 _ 2 |2 MeSH
|a Microfluidics
650 _ 2 |2 MeSH
|a Molecular Conformation
650 _ 2 |2 MeSH
|a Movement
650 _ 2 |2 MeSH
|a Physics: methods
650 _ 2 |2 MeSH
|a Polymers: chemistry
650 _ 2 |2 MeSH
|a Shear Strength
650 _ 2 |2 MeSH
|a Software
650 _ 2 |2 MeSH
|a Solvents: chemistry
650 _ 2 |2 MeSH
|a Stress, Mechanical
650 _ 2 |2 MeSH
|a Viscosity
650 _ 7 |0 0
|2 NLM Chemicals
|a Polymers
650 _ 7 |0 0
|2 NLM Chemicals
|a Solvents
650 _ 7 |a J
|2 WoSType
700 1 _ |a Winkler, R. G.
|b 1
|u FZJ
|0 P:(DE-Juel1)131039
700 1 _ |a Gompper, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1140/epje/i2006-10220-0
|g Vol. 23, p. 349 - 354
|p 349 - 354
|q 23<349 - 354
|0 PERI:(DE-600)2004003-9
|t The @European physical journal / E
|v 23
|y 2007
|x 1292-8941
856 7 _ |u http://dx.doi.org/10.1140/epje/i2006-10220-0
909 C O |o oai:juser.fz-juelich.de:58131
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-2
|l Theorie der Weichen Materie und Biophysik
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB782
|x 0
920 1 _ |k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|0 I:(DE-Juel1)VDB1045
|x 1
970 _ _ |a VDB:(DE-Juel1)91427
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)VDB1045


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21