
John von Neumann Institute for Computing

Optimizing Lattice QCD Simulations
on BlueGene/L

Stefan Krieg

published in

Parallel Computing: Architectures, Algorithms and Applications ,
C. Bischof, M. Bücker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr,
F. Peters (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 38, ISBN 978-3-9810843-4-4, pp. 543-550, 2007.
Reprinted in: Advances in Parallel Computing, Volume 15,
ISSN 0927-5452, ISBN 978-1-58603-796-3 (IOS Press), 2008.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume38

Optimizing Lattice QCD Simulations on BlueGene/L

Stefan Krieg

Department of Physics
Faculty of Mathematics and Natural Sciences

University of Wuppertal
Gaußstraße 20, D-42119 Wuppertal, Germany

Jülich Supercomputing Centre (JSC)
Research Centre Jülich
52425 Jülich, Germany

E-mail: krieg@fz-juelich.de

I describe how Lattice QCD simulations can be optimised on IBM’s BlueGene/L eServer So-
lution computer system, focusing more on the software side of such simulations rather than on
simulation algorithms. I sketch the requirements of Lattice QCD simulations in general and
describe an efficient implementation of the simulation code on this architecture.

1 Introduction

The strong nuclear force binds protons and nucleons to form the atomic nucleus, coun-
tering the electric repulsion between the protons. However protons and nucleons are not
fundamental particles, but are comprised of ”up” and ”down” quarks, two representatives
of a family of 6 quarks. These are the fundamental degrees of freedom of the theory of the
strong force, called Quantum Chromodynamics (QCD). The gluons are the gauge bosons
in QCD, mediating the strong nuclear force, similar to photons in (Quantum) Electrody-
namics. Because the coupling describing the strength of QCD interactions scales with the
energy, and is large at low energy, Taylor expansions in this coupling are not valid, meaning
that there is no known method of analytically calculating the low energy observables of the
theory, such as particle masses. Thus it is difficult to compare the theory with experiment.

However a specific formulation of the theory, called Lattice QCD (LQCD), allows a
numerical calculation of many of these observables, using a Monte-Carlo approach. A
similarity between LQCD and Statistical Mechanics has allowed a fruitful interaction be-
tween the two fields, so that similar simulation algorithms are employed in both areas. The
standard Monte Carlo methods used in LQCD are the Hybrid Monte Carlo algorithm1 and
its variants, comprised of a Molecular Dynamics evolution of the gluon fields, followed
by a Metropolis accept/reject step. The main difference between LQCD and Statistical
Mechanics is the dimensionality: QCD, being a relativistic theory, has four (space-time)
dimensions. In LQCD, the quarks and gluons ”live” on a four dimensional lattice and all
”interactions” are essentially local, so that only nearest neighbouring (and in a few formu-
lations next to neighbouring) lattice sites interact.

The Wilson Dirac Kernel

The run-time of a LQCD simulation is dominated by a small kernel, which multiplies the
sparse Dirac Matrix with a vector. There are several different variants of the Dirac Matrix.

543

A commonly used option is the Wilson Dirac Matrix

Mxy = 1− κ
∑

µ

(r − γµ)⊗ Uµ xδy x+µ̂ + (r + γµ)⊗ U†µ x−µ̂δy x−µ̂. (1.1)

It connects only lattice points which are nearest neighbours. γµ represent 4 × 4 complex
matrices with only four nonzero entries each, the Uµ(x) matrices are 3×3 (dense complex)
SU(3) matrices (these matrices are tensor multiplied in qE. 1.1) and κ encodes the quark
mass. The γ matrices are fixed for every direction µ, whereas the U matrices are dynamical
variables and thus different for every µ and lattice site x. The latter will therefore have to
be stored in memory but are the only memory required for this matrix. Also apparent
from Eq. 1.1 is the sparseness of the Wilson Dirac matrix: The number of flops required
for a matrix-vector multiplication scales linearly with V, the number of lattice sites x in
the simulation volume. The matrix dimension N is simply given by the dimension of the
tensor product of a γ and a U matrix and the lattice volume V and is thus justN = 12×V .
This matrix-vector multiplication (the kernel) is thus sufficiently small and simple to be
optimised by hand.

2 The BlueGene/L System

The IBM Blue Gene/L eServer Solution (BGL) stems from a family of customized LQCD
machines. The family history begins in 1993 with the development of QCDSP, built by
a collaboration of different LQCD groups. The QCDSP systems were fully installed in
1998 and won the Gordon Bell prize for ”Most Cost Effective Supercomputer” that year.
Most members of the QCDSP collaboration, now joined by IBM, went on to design the
QCDOC (”QCD on a Chip”) computer. The development phase began in 1999 and the
first machines were installed in 2004.

In December 1999, IBM announced a five-year effort to build a massively parallel
computer, to be applied to the study of biomolecular phenomena such as protein folding.
In 2004 the BGL, the first of a series of computers built and planned within this effort, took
the position as the world’s fastest computer system away from the ”Earth Simulator” who
held this position from 2002 to 2004.

The BGL shares several properties with the two dedicated QCD machines. It is a mas-
sively parallel machine, with the largest installation at Los Alamos National Laboratory
being comprised of 64 racks containing 65,536 nodes, with 2 CPUs per node. These nodes
are connected by a 3d torus network (QCDOC: 6d) with nearest neighbour connections.
The two CPUs of a node can be operated in two ways: The so called ”Virtual Node” (VN)
mode divides the 512 MB and 4 MB 3rd level cache between the two nodes which then
work independently, whereas the so called ”Coprocessor mode” has the first CPU doing
all the computations and the second assisting with the communications. The VN mode
proved to be more interesting for QCD, especially to match the 4d space-time lattice to the
communication hardware topology. However, in VN mode, the communication cannot be
offloaded to any communication hardware but has to be managed by the CPU itself. But
the gain in peak performance by having both CPU’s performing the calculations more than
compensates for this.

The CPU integrates a ppc440 embedded processor and a ”double” FPU optimised for
complex arithmetic. The FPU operates on 128 bit registers with a 5 cycle pipeline latency,

544

but is capable of double precision calculations only. Single precision calculations can be
performed, but they imply an on the fly conversion to double precision during the load
and a conversion to single precision during the store operation. The FPU can perform one
multiply-add instruction on two doubles stored in a 128 bit register, which results in 2.8
GFlops peak performance per CPU with the 700 MHz clock rate used in BGL. The double
precision load/store operations always load two floating point numbers, with the first being
aligned to a 16 Byte boundary, similar to the SSE2 instructions.

The compilers are capable of rearranging the code to satisfy this requirement (”auto-
simdization”), but the simulation code usually is too complicated for this strategy to work
without problems. When auto-simdization proves problematic, it is also possible to com-
pile the code using the first FPU only making auto-simdization unnecessary.

3 Performance Optimization

The two cores of a BGL compute node can be run in two different modes: In Coproces-
sor (CO) mode the primary core does all calculations and a small part of the communi-
cations and the other core performs the remaining part of the communications. In Virtual
Node (VN) mode both cores act as independent nodes. As far as MPI is concerned this
doubles the number of available MPI tasks.

For LQCD with its rather simple communication patterns, the time spent in the com-
munication part of the kernel is relatively small compared to the time spent in the serial
part of the kernel. For that reason the VN mode is advantageous since it doubles the ma-
chine’s peak performance. In other words: in order to achieve the same performance as
in VN mode, the CO mode kernel has to have more than twice the performance per core
of the parallelised VN mode kernel, since not all communications can be handed off to
the secondary core. With a sustained performance of over 25.5% of machine peak (see
below) that would require the CO mode kernel to reach over 51% of machine peak in order
to be competitive. This is not likely since the kernel is memory bound and a single core
cannot sustain the whole memory bandwidth. As a consequence most (if not all) LQCD
applications including the Wilson Dirac kernel described here use VN mode.

In the remainder of this section I shall describe how the kernel’s serial performance and
communication part was optimised.

Optimising Single Core Performance

Since the kernel is sufficiently small and simple, it is possible and customary to optimise
the serial part by hand. Several approaches are usually considered here:

• Writing the kernel in assembly

• Writing the kernel using GCC inline assembly

• Writing the kernel using compiler macros

• Writing the kernel using some assembly generator (eg. BAGEL)

• Writing some core parts of the Kernel using one of the above methods

545

I will focus here on a version of the kernel written using the ”intrinsics” of the IBM XLC
compiler. These compiler macros are easy to use and the code generated this way performs
almost equally well as assembly code.

All arithmetic operations in the kernel use complex numbers. The FPU is optimized
for such calculations and is for example capable of performing a multiplication of two
complex numbers (a,b) in only 2 clock cycles (c contains the result):

fxpmul a , b , tmp
fxcxnpma c , b , tmp , a

The same code using intrinsics (including load/store):

double Complex a lpha , be t a , gamma , tmp ;
a l p h a = l f p d (&a) ;
b e t a = l f p d (&b) ;
fxpmul (a lpha , be t a , tmp) ;
fxcxnpma (gamma , be t a , tmp , a l p h a) ;
s t f p d (&c , gamma) ;

As can be seen from the second example, the intrinsics match the assembly instructions,
but do not use explicit registers. The compiler will select the registers as well as schedule
the instructions.

The most important part of the kernel is a multiplication of the (complex dense) 3× 3
SU(3) matrix, representing the gluon fields, with a vector. The intrinsics code for the first
component of the result vector is:

tmp = fxpmul (su3 00 , c r e a l (vec0)) ;
tmp = fxcxnpma (tmp , su3 00 , c imag (vec0)) ;
tmp = fxcpmadd (tmp , su3 01 , c r e a l (vec1)) ;
tmp = fxcxnpma (tmp , su3 01 , c imag (vec1)) ;
tmp = fxcpmadd (tmp , su3 02 , c r e a l (vec2)) ;
tmp = fxcxnpma (tmp , su3 02 , c imag (vec2)) ;

This code could run at about 92% of peak, (not considering pipeline issues). In order to
avoid stalling the pipeline, two complete matrix vector multiplications should be performed
simultaneously.

Typically LQCD calculations in general and the kernel operations in particular are
not only limited by the memory bandwidth but also feel the memory latency because of
non-sequential memory access patterns. Thus prefetching is another very important ingre-
dient for the kernel optimisation. The intrisic prefetch instruction (dcbt(*void)) will
prefetch one 32 byte cacheline including the specified pointer. All scheduling will be done
by the compiler, so one only has to identify the data that has to be prefetched. A strategy
that proved successful is to prefetch the next SU(3) matrix and next vector, while perform-
ing the previous calculation. This will optimize for the case that the data is already in the
3rd level cache, which can be assumed since memory bandwidth is limited.

Optimising Communications

Since LQCD uses a 4d space-time lattice and only nearest neighbour interactions, the obvi-
ous strategy for communication is to match the lattice dimensions with the communication

546

hardware layout, that is to parallelise in all 4 dimensions (the 4th direction is along the two
CPU’s on a node). A typical MPI communicator will have the dimension 8×8×8×2, here
matching the communication layout to the smallest partition of BGL (being a torus), the so
called ”mid-plane” (512 nodes/1024 CPUs). The latest versions of MPI will usually make
sure that a node’s coordinates in a communicator agree with its hardware coordinates in
the job’s partition. This is rather important, since a mismatch can severely impact perfor-
mancea. A useful tool to check whether this really is the case are the run-time system calls
”rts get personality(..)”, which returns a structure containing the node’s coor-
dinates, and “rts get processor id()”, which returns the calling CPU’s ID inside
the node (0 or 1).

Thin interplay between communication and calculation can be highly optimised if the
special LCQD communication APIs are used. In that case many different communication
strategies can be applied. Since for single precision the performance of the kernel is the
same with the QCD API or MPI, I will focus on the MPI implementation here. For MPI
in general there are two different communication strategies that can be used (on a machine
that cannot offload communications):

• Either first communicate the boundaries of the local sub-lattices and then do all the
calculations

• or first carry out some part of the calculation, communicate intermediate results cut-
ting the amount of data to be communicated by half, and then do the remaining cal-
culations.

On the BGL the second strategy proved to be best, and all results quoted are for a kernel
using this method. The communication buffers needed within this approach can be located
in an area of memory with a special caching strategy: Since they are only written during the
preparation of the communication and only read once, it is advantageous to put them in a
chunk of memory with ”store-without-allocate” caching strategy. The run-time call for this
is ”rts get dram window(.., RTS STORE WITHOUT ALLOCATE, ..)”. Data
stored to memory allocated in this way will not pollute the L1 cache but be directly stored
to the lower memory hierarchies, in this case the L3.

Since in the case of the kernel all pointers to memory that are involved in the com-
munications do never change, the use of persistent sends and receives (”MPI PSend,
MPI PRecv, MPI Startall, MPI Waitall”) has proved to be the best choiceb.
This also allows the MPI to make sure that all send/receive fifos are kept busy simultane-
ously, thus optimizing the bandwidth.

Making Use of Single Precision Arithmetics

Since the FPU of the BGL compute node supports only double precision arithmetics both
single and double precision calculations have the same peak performance. The compute
kernel however is memory bandwidth limited. Thus the single precision kernel will reach

aThe mapping of the MPI Cartesian communicator to the hardware torus can be easily set with the
”BGLMPI MAPPING=TZYX” environment variable by changing the order of the default ”XYZT”.
bThe environment variable ”BGLMPI PACING=N” can be set to switch off the packet pacing, since the dominant
communication is nearest neighbours only. This results in slightly smaller communication time.

547

 0

 5

 10

 15

 20

 25

 30

 2000 3000 4000 5000 6000 7000 8000 9000
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

P
e
rf

o
rm

a
n
c
e
/%

P
e
a
k

K
e
rn

e
l
m

e
m

o
ry

 f
o
o
tp

ri
n
t

Nodes

Perf. single prec.
Perf double prec.

Mem. footprint single prec.
Mem. footprint double prec.

Figure 1. Performance and memory footprint of the single and the double precision kernels as a function of the
number of nodes in a strong scaling analysis (global 483× 96 lattice). The grey shaded area is the L3 cache size.

a higher performance since it has half the memory and communication bandwidth require-
ments. Since it also has half the memory footprint of the double precision kernel, scaling
will also be improved (see Fig.1). This improvement comes at virtually no coding costs:
the only difference between the single precision and the double precision kernel is the
load/store instructions and prefetches.

Making use of the single precision kernel is not trivial from a mathematical point of
view, since most LQCD calculation require double precision accuracy. For our simulations
with dynamical overlap fermions however we can use our inverter scheme, the relaxed
GMRESR with SUMR preconditioner2 and replace the double precision with a single pre-
cision preconditioner. Depending on the lattice size almost all computer time will be spent
in this preconditioner and thus the performance of the single precision kernel will, to a
good accuracy, dominate the performance of the whole code. There certainly is a price to
be paid by switching to the single precision SUMR: the total number of calls to the kernel
increases slightly compared to the full double precision calculation. Up to lattice sizes of
483 × 64 this increase however always stayed well below 10% and is thus much smaller
than the gain of using double precision (comp. figures 1 and 2).

4 Performance Results and Scaling

Since all communications are constrained to a node’s nearest neighbours, and the BGL’s
network is a torus, weak scaling is perfectly linear. In Fig.2 both the performance for

548

 0

 2

 4

 6

 8

 10

 12

 14

 2000 3000 4000 5000 6000 7000 8000 9000

P
e
rf

o
rm

a
n
c
e
/T

F
lo

p
s

Nodes

Perf. strong scal. single prec.
Perf. strong scal. double prec.

Perf. weak scal. single prec.
Perf. weak scal. double prec.

Figure 2. Performance of the single and the double precision kernels as a function of the number of nodes in a
weak (local 43 × 8 lattice) and strong scaling analysis (strong 483 × 96).

a weak and strong scaling analysis of the kernel are shown. For weak scaling, the kernel
reaches 25.5% of machine peak for single and 18.4% of machine peak for double precision
accuracy. The performance numbers for the strong scaling analysis are plotted in Fig.1
and reach 24.5% of machine peak single and 16.0% of machine peak in double precision
accuracy.

As long as the kernel memory footprint fits into the L3 cache, the performance of the
kernel matrix always exceeds 20% of machine peak. (The relative dip of performance at
2k nodes is due to a suboptimal local lattice layout.) The scaling region is therefore quite
large and reaches up to 8k nodes for the global lattice chosen here.

5 Conclusions and Outlook

I have shown how to optimise the Wilson Dirac kernel for the IBM Blue Gene/L ar-
chitecture with the IBM XLC compiler macros and MPI. The kernel scales up to the
whole machine and reaches a performance of over 11 TFlop/s in single precision and over
8.4 TFlop/s in double precision on the whole 8 Rack Blue Gene/L ”JUBL” at the Jülich
Supercomputing Centre (JSC) of the Research Centre Jülich.

The JSC will install a 16 Rack Blue Gene/P (BGP) with 220 TFlop/s peak performance
end of 2007. A first implementation of the (even/odd preconditioned) Wilson Dirac ker-
nel shows that this too is a particularly well suited architecture for LQCD: the sustained
per node performance of the kernel went up from 1.3 GFlop/s (1.0 GFlop/s) on BGL to

549

4.3 Gflop/s (3.3 GFlop/s) or 31.5% (24.3%) of machine peak on BGP in single precison
(double precision) accuracy.

Acknowledgements

I would like to thank Pavlos Vranas, then IBM Watson Research, for many valuable dis-
cussions, Bob Walkup of IBM Watson Research for his help during the first stages of
the project, Charles Archer of IBM Rochester for his help with the BGL MPI and Nigel
Cundy for his ongoing collaboration. I am indebted to Jutta Docter and Michael Stephan,
both JSC, for their constant help with the machine.

References

1. S. Duane, A. Kennedy, B. Pendelton and D. Roweth, Phys. Lett. B, 195, 216 (1987).
2. N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lippert and K. Schäfer, Nu-

merical methods for the QCD overlap operator. III: Nested iterations, Comp. Phys.
Comm., 165, 841, (2005). hep-lat/0405003.

3. P. Vranas et al., The Blue Gene/L Supercomputer and Quantum Chromo Dynamics
4. N. R. Adiga et al, BlueGene/L torus interconnect network, IBM Journal of Research

and Development Vol. 49, Number 2/3, (2005).
5. IBM Redbook ”Blue Gene/L: Application Development”
6. IBM J. Res. & Dev. Vol. 49, March/May, (2005)

550

