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Taking into account the electrostrictive coupling between inhomogeneous polarization fluctuations and
lattice strains in ferroelectric films, we show that, in heterostructures involving strained epitaxial films and
metal electrodes, the single-domain state may remain stable against the transformation into a polydomain
state down to the nanometer scale. This result indicates that the ferroelectric states with opposite remanent
polarizations can be stabilized even in nanoscale capacitors and tunnel junctions, which opens the

possibility of their application for memory storage.
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The persistence of ferroelectricity in ultrathin films is an
issue of high fundamental and practical interest. In par-
ticular, the stability of states with a nonzero net polariza-
tion represents a matter of primary importance. Indeed, the
presence of remanent out-of-plane polarization is neces-
sary for the memory applications of ferroelectric films in
the form of capacitors [1] and tunnel junctions [2—4].

Dependence of the polarization pattern P(r) on the film
thickness may result from both long-range and short-range
interactions. The most widely discussed cause of this size
effect is the existence of a depolarizing field [5—10]. The
phenomenological theory predicted a long time ago that
this field differs from zero even in thin films covered by
metal electrodes [6,8]. The depolarizing-field effect on
polarization was invoked to explain the gradual reduction
of tetragonality in ultrathin PbTiO; films [11] and the
polarization relaxation observed in SrRuO;/BaTiO;/
SrRuQO; capacitors [12]. In addition to the long-range
depolarizing field, the film polarization may be affected
by the intrinsic surface effect associated with dipole-dipole
interactions [13] and by short-range interactions between
atomic layers adjacent to the ferroelectric-electrode inter-
face [14,15].

According to the predictions of the mean-field theory
[5,7] and recent first-principles calculations [10,14,15], the
depolarizing-field effect may lead to the complete disap-
pearance of the ferroelectric phase below some critical film
thickness. In these studies, however, the film was assumed
to remain in a single-domain state, although the depolariz-
ing field Eg4,, tends to induce the formation of a 180°
domain structure [16]. Since this transformation strongly
reduces the magnitude of Ey,, it may prevent the ferro-
electric to paraelectric phase transition. Thus, the stability
of a single-domain film against the appearance of 180°
domains becomes an extremely important issue.

The stability problem can be solved by studying small
inhomogeneous perturbations of the uniform polarization
state [17]. The existing solutions of this problem [17,18],
however, ignore totally the fact that, owing to the electro-
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strictive coupling, the polarization fluctuations inevitably
modify the lattice strains. This effect is expected to play an
important role in the stabilization of the single-domain
state in both thin-film and bulk ferroelectrics, because
lattice strains strongly influence the magnitude and orien-
tation of polarization in epitaxial films [19-21].

In this Letter, we present a rigorous solution of the
stability problem for the single-domain state in ferroelec-
tric films and demonstrate that the electrostrictive coupling
between polarization and strain may stabilize this state
even in few-nanometer-thick epitaxial layers. This predic-
tion differs drastically from the former results [18], which
indicated that the polydomain state of ferroelectric films is
almost always preferred over the single-domain one.

We focus on thin films of perovskite ferroelectrics grown
on a thick cubic substrate inducing compressive in-plane
strains in the film. At thicknesses ¢ outside the nanoscale
range, such films stabilize in the tetragonal ¢ phase with
the polarization P orthogonal to the substrate [19,20].
Neglecting for clarity the surface effects on P(r) [13—
15], we assume the film to be homogeneously polarized
in the ground state and first determine the spontaneous
polarization, which is necessary for the stability analysis.
The film polarization can be calculated from the nonlinear
equation of state derived by differentiating the film
Helmholtz free energy [21] written in terms of polarization
components P; (i = 1, 2, 3). For the ¢ phase (P, = P, = 0,
P; # 0) stable at negative misfit strains S,,, we obtain

261;1)3 + 4Cl§3P§ + 60111P§ + Sa“lng + .= E3, (1)

where a3 = a; +25,,(q11¢12 — qoc11) /ey, a3 = ay —
q1,/(2c11), ay, a;j, aijp, and a;y are the dielectric stiffness
coefficients at constant strain, g;, are the relevant electro-
strictive constants, and ¢, are the film elastic stiffnesses
at constant polarization. The total electric field E3 inside
the film can be calculated from the voltage drop V, across
the metal-ferroelectric-metal (MFM) heterostructure and
the continuity condition of the electric displacement
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D = g,E + P at the interfaces (g is the permittivity of the
vacuum) [6,7]. The calculation yields [22]
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b3 = — 2

where c; is the total capacitance of the screening space
charge in the electrodes [23]. The substitution of Eq. (2)
into Eq. (1) shows that the depolarizing field Eg4., =
—P3/(gy + c;t) formally renormalizes the coefficient a;
of the lowest-order polarization term, transforming it into
ay = a; + 1/[2(gy + ¢;1)]. Using this expression, we can
calculate P3 and Ey., as a function of the film thickness 7.

We performed these calculations for Pb(Zr5Tig5)O0;3
(PZT) and BaTiO5 (BT) films grown on SrTiOs, assuming
S,, to be equal to a thickness-independent value attained in
fully strained MFM trilayers. The spontaneous polarization
P, = P5(V, = 0) of PZT films was calculated in the P°
approximation, while we used the P® approximation [24]
to find P, of BT films [25]. Since the capacitance c; affects
|

P, only via the product c;t, the dependences P,(f) corre-
sponding to different electrode materials can be described
by one universal curve P(f.s). The effective film thickness
t.s may be defined as t. = (c;/cy)t, where ¢; = 1 F/m>.

The calculated curves P(z;) show that the out-of-plane
polarization P, vanishes at a critical film thickness #,,
which was regarded as a size-induced phase transition
[10,26]. Just above to = —1/(2¢;a}), the film polarization
steeply increases with thickness and reaches values com-
parable to the bulk polarization (see Fig. 1). At ¢; =
0.444 F/m? characteristic of SrRuO; electrodes [27], the
calculation gives #, =2 nm for PZT films and f, =
2.6 nm for BT films [28]. Therefore, even nanoscale ca-
pacitors and tunnel junctions may have the out-of-plane
polarization sufficient for the memory applications.

Now we shall analyze a wavelike perturbation of the
uniform polarization state. Since the polarization distribu-
tion becomes inhomogeneous, Eq. (1) should be replaced
by the Euler equations involving the gradient terms. For
ferroelectrics with a cubic paraelectric phase, these equa-
tions in our two-dimensional case [29] become

(2a; +4ay P} +2a;,P3 + )Py — 241,511 Py — 2q12(Sp + 833)P1 — 2qu4S13P3 — Ey = 811 P11y + (844 + 844 P 133

+ (g1t 8as —gP313  (3)

(2a; +4ay P3+2a,P3 + )Py —2q11S33P3 = 2q12(S11 + S22)P3 — 2q44S13P1 — E3 = (812 + 8aa + 84) P11

+(gus — &4)P311 T 211 P33, (4

where indices after the comma denote differentiation with respect to the coordinates x; and x5, g;, are the coefficients of
the gradient terms in the free-energy expansion [30], and §;; are the lattice strains in the film (Sy, = S,,). The polarization
components involved in Egs. (3) and (4) can be written as P; = P, + 8P5(x3) exp(ikx;) and P; = 8P, (x3) exp(ikx,), with
8P, 8P; < P,. Similar relations S;; = S,, + 8S1,(x3) exp(ikx;), S33 = (q11P? — 2¢12S,,)/ci1 + 8S33(x3) explikx,),
S13 = 8513(x3) exp(ikx;), and ¢ = Po(x3) + dP(x3) exp(ikx;) can be introduced for the film strains and the electrostatic

potential ¢. Using these formulas and retaining only the lowest-order perturbation terms, we obtain

(Y11 + 811k*) 8Py — 2quuP 8813 + ik8p = (gaq + ghy)OP 133 + k(g1 + gas — 84s) P35, )

(X33 + (844 — 84)K*16P3 — 241 P;8S33 — 2q12P8S1 + 8¢ 5 = ik(gin + gas + 84u)OP 5 + 8116P3 33, (6)

where ¥y, = 2a; — 2(q11 + q12 — 2qicn/ci)Sw +
2apn = qugqn/ci)Ps + 2a1pPi + -+ and ¥ =
2ay +4[q1i(cio/c11) — 41218, + 12[ay — g1,/ (6¢11)]PS +
30611]1P?+"'.

In addition to Egs. (5) and (6), four other equations must
be satisfied. First, the electrostatic condition divD = 0
holding inside an insulating film provides a relation be-
tween the perturbations 6¢, 6P, and 86P5. Second, the
strains S;; in the film must obey the classical compatibility
condition €;5;€,,Sinkm = 0 (€j is the permutation sym-
bol), which reduces to one nontrivial equation in our case.
Third, the equations of mechanical equilibrium o;; ; = 0
written for the film stresses o;; yield another two relations.
In total, we obtain a system of six differential equations for
six unknown functions: 6P, 6P3, 6¢, 6S;;, 6533, and
0S3. The analysis shows that here the terms involving a
very small factor &5 may be neglected. Then the discussed

{
system may be reduced to the following two simultaneous

equations:

(X33 — 2912GP; + (844 — g4)k*1k>6P5

— X1+ 2q44GPs + 2(811 — 812 — 8aa)k*16P3 33

+ (844 + 8hu)OP33335 — 212 — c11G)IPk*8S),

—(qas + 2¢44§)P8S)133 =0, (7)

4c4uq 2Pk 8P3 + 2 (c1a + 2¢44)q11 — €11q12 — €12G44]

X Psk28P3,33 —2¢11944Ps6P3 3333 — 2¢11c44k* 881,

+(cf) — ¢y —4c12c4a)k? 881133 — 2¢11¢4488 11,3333 =0,
(®)

where § = (2q;; — qua)/(ci2 + 2c44). It should be empha-
sized that Egs. (7) and (8) differ dramatically from the
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FIG. 1 (color online). Thickness dependence of the out-of-
plane polarization and depolarizing field in ultrathin (a) PZT
and (b) BT films grown on SrTiO;. The misfit strain is taken to
be —39 X 1073 for PZT films and —26 X 1073 for BT films;
T = 25 °C. The effective film thickness 7. is defined in the text.
The dashed line shows the thickness below which the single-
domain state becomes unstable.

differential equation used to describe the stability of a
uniform polarization state formerly [17,18,31]. Indeed,
owing to the electrostrictive effect, Eq. (7) contains terms
depending on the lattice strain and its second derivative,
which were overlooked previously. Moreover, additionally,
Eq. (8) must be satisfied because the polarization wave
creates an elastic wave in a piezoelectric medium.

Since the system (7) and (8) is homogeneous, we may
seek the solution in the form of 6P; = A exp(Ax3), 65, =
Bexp(Ax;). This leads to a homogeneous system of two
linear algebraic equations in the unknown coefficients A
and B. Calculating the determinant A, of this system and
setting it to zero, we obtain the characteristic equation
A,(A) =0 in the form of a quartic algebraic equation
with respect to A%2. When all roots A, (k) of this equation
are distinct, 8P3; =3%_ A, exp(A,x3) and 88 =
S8 | B, exp(A,x3). Here each coefficient B, can be ex-
pressed in terms of A, using Eq. (8), for example; see
Ref. [22]. In turn, the coefficients A, must satisfy a system
of eight simultaneous equations, which follow from the
boundary conditions.

To derive this system, we first employ the continuity of
potential ¢ and displacement D5 at the film-electrode
interfaces. Within the film, the perturbation §¢(x3) can
be calculated in terms of A, exp(A,x3). The potential ¢,,
inside electrodes in the presence of a polarization wave
becomes ¢, = ¢,,0(x3) + ¢, (x3)exp(ikx;). The pertur-
bation 8¢,,(x;) can be easily found in the screening length
approximation to be &8¢, =Lyexp(—{x;), with (=
VKk? + 172, in the right electrode (x; =0) and 8¢, =
L, exp[{(x; + 1)] in the left one (x3 = —r). Using these
expressions to formulate four boundary conditions and
then eliminating L, and L,, we obtain 6P; = gpg,,{6¢
at x3 =0and O6P; = —¢gpe,,{0¢ at x3 = —t. These re-
lationships give us the first two equations for A,,. Another
two equations follow from the conditions imposed on the
polarization derivative P33 [13], which in the approxima-
tion of an infinite extrapolation length reduce to 6P53 = 0
at x3 = 0 and x3 = —1t.

The mechanical boundary conditions of the film may be
simplified by neglecting the mechanical influence of elec-
trodes in comparison with the substrate effect. (The bottom
electrode is assumed to be fully strained by a thick sub-
strate.) Then on the top film surface (x3 = 0) the stresses
033 and o3 may be set to zero. The lattice matching on the
bottom film surface implies the continuity of the mechani-
cal displacement and the stresses o33 and o3 at x3 = —t.
It can be shown that the first of these conditions in our case
giVCS 5511 = 5S51lib and 25S13 - (1/[]()5511]3 = 25S?%b -
(1/ik)8SyPs at x3 = —1. The strains 3> = 883" (x3) X
exp(ikx;) and the stresses oj¥* = 07"(x3) exp(ikx;) in
the nonpiezoelectric cubic substrate can be calculated from
the compatibility condition and the equations of mechani-
cal equilibrium. For the function 8S4°(x3), the calculation
gives 0SS = R, exp(Bkx3) + R, exp(Brkx3), where

Bia=y\EEXVE -1, E=(cf, —cf, —4dcipca)/(berica),
and c,,, are the elastic stiffnesses of the substrate (set equal
to those of the film here). Similar relations can be derived
for 6555, §S5%°, and the functions 80’?}*’(@) defining the
stresses in the substrate [22]. The coefficients R, and R,
can be calculated in terms of A,, using the strain conditions
on the film-substrate interface. The remaining four stress
conditions together with the four electrical conditions give
us the sought system of eight linear algebraic equations for
the coefficients A,,.

Since this system is homogeneous, a nonzero solution
for A,, exists only when its determinant A 4 equals zero. By
solving the equation A (k) = 0 numerically, it is possible
to check the existence of any root k # 0. If there are no
such roots, the uniform polarization state remains stable
against inhomogeneous polarization perturbations. The
critical thickness 7., at which the single-domain state be-
comes unstable, can be found as a maximum value of ¢ at
which a nonzero solution for k first appears.

We performed necessary numerical calculations for
fully strained BT and PZT films grown on SrTiO;. Since
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FIG. 2 (color online). Variation of the critical thickness f .y
with the misfit strain calculated for epitaxial BT and PZT films
sandwiched between SrRuO; electrodes (c; = 0.444 F/m?). The
temperature equals 25 °C, and the strain range is restricted to
guarantee the stability of the ¢ phase.

for our purposes it is sufficient to determine the upper
bound .., of the critical thickness, we simplified the
problem by setting the gradient coefficients g;, to zero.
The magnitude of ¢, ;,,x may be computed for one particu-
lar interfacial capacitance c; only, because the critical
thickness is inversely proportional to c¢;. We studied the
case of two SrRuOj electrodes (c; = 0.444 F/m?). At
room temperature, f..,,, was found to be slightly below
2.98 nm for BT films and below 2.73 nm for PZT films. The
magnitude of #. ..., weakly decreases with decreasing tem-
perature, reducing at 7 = —200 °C down to about 2.46 nm
in BT films and 2.63 nm in PZT films.

The calculations also show that 7, .« strongly increases
when the magnitude of compressive strain is reduced (see
Fig. 2). To clarify the role of the strain effect further, we
computed the critical thickness in the absence of electro-
strictive coupling (g,, were set to zero), using the estimates
of gradient coefficients g;, given in Ref. [21]. It was found
that 7. increased up to about 37 nm for BT films and 56 nm
for PZT films at room temperature. Hence, the strain effect
reduces the critical thickness by more than a factor of 10.

Thus, by combining highly strained epitaxial films with
metallic electrodes having good screening properties, it is
possible to stabilize the single-domain ferroelectric state in
nanoscale capacitors and tunnel junctions. Remarkably,
this stabilization results from the elastic effect caused by
the electrostrictive coupling between polarization and
strain. Our prediction is in line with the recent observation
of the monodomain polarization state in ultrathin PbTiO;
films [32]. Moreover, the very small critical thickness
calculated for BT films does not contradict the experimen-
tal data of Ref. [12], where the 5-nm-thick BT film sand-
wiched between two SrRuQ; electrodes was found to have
relatively large remanent polarization.
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