000058286 001__ 58286
000058286 005__ 20200423204521.0
000058286 0247_ $$2DOI$$a10.1103/PhysRevLett.99.126402
000058286 0247_ $$2WOS$$aWOS:000249668000052
000058286 0247_ $$2Handle$$a2128/7728
000058286 037__ $$aPreJuSER-58286
000058286 041__ $$aeng
000058286 082__ $$a550
000058286 084__ $$2WoS$$aPhysics, Multidisciplinary
000058286 1001_ $$0P:(DE-HGF)0$$aDe Raychaudhury, M.$$b0
000058286 245__ $$aOrbital fluctuations in the different phases of LaVO3 and YVO3
000058286 260__ $$aCollege Park, Md.$$bAPS$$c2007
000058286 300__ $$a126402
000058286 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058286 3367_ $$2DataCite$$aOutput Types/Journal article
000058286 3367_ $$00$$2EndNote$$aJournal Article
000058286 3367_ $$2BibTeX$$aARTICLE
000058286 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058286 3367_ $$2DRIVER$$aarticle
000058286 440_0 $$04925$$aPhysical Review Letters$$v99$$x0031-9007
000058286 500__ $$aRecord converted from VDB: 12.11.2012
000058286 520__ $$aWe investigate the importance of quantum orbital fluctuations in the orthorhombic and monoclinic phases of the Mott insulators LaVO3 and YVO3. First, we construct ab initio material-specific t(2g) Hubbard models. Then, by using dynamical mean-field theory, we calculate the spectral matrix as a function of temperature. Our Hubbard bands and Mott gaps are in very good agreement with spectroscopy. We show that in orthorhombic LaVO3, quantum orbital fluctuations are strong and that they are suppressed only in the monoclinic 140 K phase. In YVO3 the suppression happens already at 300 K. We show that Jahn-Teller and GdFeO3-type distortions are both crucial in determining the type of orbital and magnetic order in the low temperature phases.
000058286 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000058286 588__ $$aDataset connected to Web of Science
000058286 650_7 $$2WoSType$$aJ
000058286 7001_ $$0P:(DE-Juel1)130881$$aPavarini, E.$$b1$$uFZJ
000058286 7001_ $$0P:(DE-HGF)0$$aAndersen, O. K.$$b2
000058286 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.99.126402$$gVol. 99, p. 126402$$p126402$$q99<126402$$tPhysical review letters$$v99$$x0031-9007$$y2007
000058286 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevLett.99.126402
000058286 8564_ $$uhttps://juser.fz-juelich.de/record/58286/files/FZJ-58286.pdf$$yOpenAccess$$zPublished final document.
000058286 8564_ $$uhttps://juser.fz-juelich.de/record/58286/files/FZJ-58286.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000058286 8564_ $$uhttps://juser.fz-juelich.de/record/58286/files/FZJ-58286.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000058286 8564_ $$uhttps://juser.fz-juelich.de/record/58286/files/FZJ-58286.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000058286 909CO $$ooai:juser.fz-juelich.de:58286$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000058286 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000058286 9141_ $$y2007
000058286 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000058286 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000058286 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000058286 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000058286 970__ $$aVDB:(DE-Juel1)91700
000058286 980__ $$aVDB
000058286 980__ $$aConvertedRecord
000058286 980__ $$ajournal
000058286 980__ $$aI:(DE-Juel1)PGI-1-20110106
000058286 980__ $$aUNRESTRICTED
000058286 980__ $$aFullTexts
000058286 9801_ $$aFullTexts
000058286 981__ $$aI:(DE-Juel1)PGI-1-20110106