000058290 001__ 58290
000058290 005__ 20200423204521.0
000058290 0247_ $$2DOI$$a10.1524/zpch.2007.221.11-12.1469
000058290 0247_ $$2WOS$$aWOS:000252221500004
000058290 0247_ $$2ISSN$$a0942-9352
000058290 0247_ $$2Handle$$a2128/18340
000058290 037__ $$aPreJuSER-58290
000058290 041__ $$aeng
000058290 082__ $$a540
000058290 084__ $$2WoS$$aChemistry, Physical
000058290 1001_ $$0P:(DE-Juel1)VDB61376$$aSchindler, C.$$b0$$uFZJ
000058290 245__ $$aResistive switching in Ge0.3Se0.7 films by means of copper ion migration
000058290 260__ $$aMünchen$$bOldenbourg$$c2007
000058290 300__ $$a
000058290 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058290 3367_ $$2DataCite$$aOutput Types/Journal article
000058290 3367_ $$00$$2EndNote$$aJournal Article
000058290 3367_ $$2BibTeX$$aARTICLE
000058290 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058290 3367_ $$2DRIVER$$aarticle
000058290 440_0 $$06031$$aZeitschrift für physikalische Chemie$$v221$$x0942-9352$$y11
000058290 500__ $$aRecord converted from VDB: 12.11.2012
000058290 520__ $$aCu/Ge0.3Se0.7/Pt cells were prepared and bipolar resistive switching in Ge0.3Se0.7 films by means of copper ion migration was examined. The cell was switched from the high to the low resistance state at about -50mV, and it was switched back to the high resistance state at about 100mV. The resistance ratio between the high and the low state was up to 200. Up to approximately 10(4) switching cycles were achieved. Pulse measurements showed that the two resistance states were tuneable by varying the applied voltage and the pulse length. Therefore, it is possible to store more than one bit per cell. The current density is independent of the electrode diameter, indicating that the cell can be scaled down to the range of nanometers. Due to the low switching voltages, non-destructive read out operation, high storage density, and scalability, such cells are promising for future memory applications.
000058290 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000058290 588__ $$aDataset connected to Web of Science
000058290 650_7 $$2WoSType$$aJ
000058290 65320 $$2Author$$aresistive switching
000058290 65320 $$2Author$$anon-volatile memory
000058290 65320 $$2Author$$achalcogenide films
000058290 65320 $$2Author$$aion migration
000058290 7001_ $$0P:(DE-Juel1)VDB518$$aGuo, X.$$b1$$uFZJ
000058290 7001_ $$0P:(DE-Juel1)VDB17427$$aBesmehn, A.$$b2$$uFZJ
000058290 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b3$$uFZJ
000058290 773__ $$0PERI:(DE-600)2020854-6$$a10.1524/zpch.2007.221.11-12.1469$$gVol. 221$$q221$$tZeitschrift für Physikalische Chemie$$v221$$x0942-9352$$y2007
000058290 8567_ $$uhttp://dx.doi.org/10.1524/zpch.2007.221.11-12.1469
000058290 8564_ $$uhttps://juser.fz-juelich.de/record/58290/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20Resistive%20Switching%20in%20Ge0.3Se0.7%20Films%20by%20Means%20of%20Copper%20Ion%20Migration.pdf$$yOpenAccess
000058290 8564_ $$uhttps://juser.fz-juelich.de/record/58290/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20Resistive%20Switching%20in%20Ge0.3Se0.7%20Films%20by%20Means%20of%20Copper%20Ion%20Migration.gif?subformat=icon$$xicon$$yOpenAccess
000058290 8564_ $$uhttps://juser.fz-juelich.de/record/58290/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20Resistive%20Switching%20in%20Ge0.3Se0.7%20Films%20by%20Means%20of%20Copper%20Ion%20Migration.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000058290 8564_ $$uhttps://juser.fz-juelich.de/record/58290/files/%5BZeitschrift%20fr%20Physikalische%20Chemie%5D%20Resistive%20Switching%20in%20Ge0.3Se0.7%20Films%20by%20Means%20of%20Copper%20Ion%20Migration.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000058290 909CO $$ooai:juser.fz-juelich.de:58290$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000058290 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000058290 9141_ $$y2007
000058290 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000058290 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000058290 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000058290 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000058290 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000058290 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000058290 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000058290 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000058290 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x2
000058290 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x3
000058290 970__ $$aVDB:(DE-Juel1)91705
000058290 980__ $$aVDB
000058290 980__ $$aConvertedRecord
000058290 980__ $$ajournal
000058290 980__ $$aI:(DE-Juel1)VDB381
000058290 980__ $$aI:(DE-Juel1)PGI-7-20110106
000058290 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000058290 980__ $$aI:(DE-82)080009_20140620
000058290 980__ $$aUNRESTRICTED
000058290 9801_ $$aFullTexts
000058290 981__ $$aI:(DE-Juel1)PGI-7-20110106
000058290 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000058290 981__ $$aI:(DE-Juel1)VDB881