000058481 001__ 58481
000058481 005__ 20180211182601.0
000058481 0247_ $$2pmid$$apmid:17916115
000058481 0247_ $$2DOI$$a10.1111/j.1365-313X.2007.03289.x
000058481 0247_ $$2WOS$$aWOS:000251207400008
000058481 037__ $$aPreJuSER-58481
000058481 041__ $$aeng
000058481 082__ $$a580
000058481 084__ $$2WoS$$aPlant Sciences
000058481 1001_ $$0P:(DE-HGF)0$$aWu, J.$$b0
000058481 245__ $$aNaRALF, a peptide signal essential for the regulation of root hair tip apoplastic pH in Nicotiana attenuata, is required for root hair development and plant growth in native soils
000058481 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2007
000058481 300__ $$a877 - 890
000058481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058481 3367_ $$2DataCite$$aOutput Types/Journal article
000058481 3367_ $$00$$2EndNote$$aJournal Article
000058481 3367_ $$2BibTeX$$aARTICLE
000058481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058481 3367_ $$2DRIVER$$aarticle
000058481 440_0 $$015001$$aPlant Journal$$v52$$x0960-7412$$y5
000058481 500__ $$aRecord converted from VDB: 12.11.2012
000058481 520__ $$aRapid alkalinization factor (RALF) is a 49-amino-acid peptide that rapidly alkalinizes cultivated tobacco cell cultures. In the native tobacco Nicotiana attenuata, NaRALF occurs as a single-copy gene and is highly expressed in roots and petioles. Silencing the NaRALF transcript by transforming N. attenuata with an inverted-repeat construct generated plants (irRALF) with normal wild-type (WT) above-ground parts, but with roots that grew longer and produced trichoblasts that developed into abnormal root hairs. Most trichoblasts produced a localized 'bulge' without commencing root hair tip growth; fewer trichoblasts grew, but were only 10% as long as those of WT plants. The root hair phenotype was associated with slowed apoplastic pH oscillations, increased pH at the tips of trichoblasts and decreased accumulation of reactive oxygen species in the root hair initiation zone. The root hair growth phenotype was partially restored when irRALF lines were grown in a low-pH-buffered medium, and reproduced in WT plants grown in a high-pH-buffered medium. When irRALF plants were grown in pH 5.6, 6.7 and 8.1 soils together with WT plants in glasshouse experiments, they were out-competed by WT plants in basic, but not acidic, soils. When WT and irRALF lines were planted into the basic soils of the native habitat of N. attenuata in the Great Basin Desert, irRALF plants had smaller leaves, shorter stalks, and produced fewer flowers and seed capsules than did WT plants. We conclude that NaRALF is required for regulating root hair extracellular pH, the transition from root hair initiation to tip growth and plant growth in basic soils.
000058481 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000058481 588__ $$aDataset connected to Web of Science, Pubmed
000058481 650_2 $$2MeSH$$aAmino Acid Sequence
000058481 650_2 $$2MeSH$$aCloning, Molecular
000058481 650_2 $$2MeSH$$aGene Silencing
000058481 650_2 $$2MeSH$$aHydrogen-Ion Concentration
000058481 650_2 $$2MeSH$$aMolecular Sequence Data
000058481 650_2 $$2MeSH$$aPhenotype
000058481 650_2 $$2MeSH$$aPlant Proteins: genetics
000058481 650_2 $$2MeSH$$aPlant Proteins: metabolism
000058481 650_2 $$2MeSH$$aPlant Proteins: physiology
000058481 650_2 $$2MeSH$$aPlant Roots: genetics
000058481 650_2 $$2MeSH$$aPlant Roots: growth & development
000058481 650_2 $$2MeSH$$aPlant Roots: metabolism
000058481 650_2 $$2MeSH$$aSequence Alignment
000058481 650_2 $$2MeSH$$aSoil
000058481 650_2 $$2MeSH$$aTobacco: genetics
000058481 650_2 $$2MeSH$$aTobacco: growth & development
000058481 650_2 $$2MeSH$$aTobacco: metabolism
000058481 650_7 $$00$$2NLM Chemicals$$aPlant Proteins
000058481 650_7 $$00$$2NLM Chemicals$$aSoil
000058481 650_7 $$2WoSType$$aJ
000058481 65320 $$2Author$$aNaRALF
000058481 65320 $$2Author$$aroot hair
000058481 65320 $$2Author$$atip growth
000058481 65320 $$2Author$$aextracellular pH oscillation
000058481 65320 $$2Author$$aplant fitness
000058481 65320 $$2Author$$aNicotiana attenuata
000058481 7001_ $$0P:(DE-HGF)0$$aKurten, E.L.$$b1
000058481 7001_ $$0P:(DE-HGF)0$$aMonshausen, G.$$b2
000058481 7001_ $$0P:(DE-Juel1)VDB67262$$aHummel, G. M.$$b3$$uFZJ
000058481 7001_ $$0P:(DE-HGF)0$$aGilroy, S.$$b4
000058481 7001_ $$0P:(DE-HGF)0$$aBaldwin, I. T.$$b5
000058481 773__ $$0PERI:(DE-600)2020961-7$$a10.1111/j.1365-313X.2007.03289.x$$gVol. 52, p. 877 - 890$$p877 - 890$$q52<877 - 890$$tThe @plant journal$$v52$$x0960-7412$$y2007
000058481 8567_ $$uhttp://dx.doi.org/10.1111/j.1365-313X.2007.03289.x
000058481 909CO $$ooai:juser.fz-juelich.de:58481$$pVDB
000058481 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000058481 9141_ $$aNachtrag$$y2007
000058481 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000058481 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000058481 970__ $$aVDB:(DE-Juel1)92062
000058481 980__ $$aVDB
000058481 980__ $$aConvertedRecord
000058481 980__ $$ajournal
000058481 980__ $$aI:(DE-Juel1)IBG-2-20101118
000058481 980__ $$aUNRESTRICTED
000058481 981__ $$aI:(DE-Juel1)IBG-2-20101118
000058481 981__ $$aI:(DE-Juel1)ICG-3-20090406