000005853 001__ 5853
000005853 005__ 20230217124329.0
000005853 0247_ $$2DOI$$a10.1103/PhysRevE.80.026404
000005853 0247_ $$2WOS$$aWOS:000269637900082
000005853 0247_ $$2Handle$$a2128/9322
000005853 037__ $$aPreJuSER-5853
000005853 041__ $$aeng
000005853 082__ $$a530
000005853 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000005853 084__ $$2WoS$$aPhysics, Mathematical
000005853 1001_ $$0P:(DE-HGF)0$$aLu, W.$$b0
000005853 245__ $$aOptimized K alpha x-ray flashes from femtosecond-laser-irradiated foils
000005853 260__ $$aCollege Park, Md.$$bAPS$$c2009
000005853 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2009-08-27
000005853 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2009-08-01
000005853 300__ $$a026404
000005853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005853 3367_ $$2DataCite$$aOutput Types/Journal article
000005853 3367_ $$00$$2EndNote$$aJournal Article
000005853 3367_ $$2BibTeX$$aARTICLE
000005853 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005853 3367_ $$2DRIVER$$aarticle
000005853 440_0 $$04924$$aPhysical Review E$$v80$$x1539-3755$$y2
000005853 500__ $$aThis work was supported by the Deutsche Forschungsgemeinschaft (Contract No. SFB 616 and Grants No. GI 300/3-1, No. TE 190/6-1, and No. So 408/6-3) and the European Union (Marie-Curie-network FLASH).
000005853 520__ $$aWe investigate the generation of ultrashort K alpha pulses from plasmas produced by intense femtosecond p-polarized laser pulses on Copper and Titanium targets. Particular attention is given to the interplay between the angle of incidence of the laser beam on the target and a controlled prepulse. It is observed experimentally that the K alpha yield can be optimized for correspondingly different prepulse and plasma scale-length conditions. For steep electron-density gradients, maximum yields can be achieved at larger angles. For somewhat expanded plasmas expected in the case of laser pulses with a relatively poor contrast, the K alpha yield can be enhanced by using a near-normal-incidence geometry. For a certain scale-length range (between 0.1 and 1 times a laser wavelength) the optimized yield is scale-length independent. Physically this situation arises because of the strong dependence of collisionless absorption mechanisms-in particular resonance absorption-on the angle of incidence and the plasma scale length, giving scope to optimize absorption and hence the K alpha yield. This qualitative description is supported by calculations based on the classical resonance absorption mechanism and by particle-in-cell simulations. Finally, the latter simulations also show that even for initially steep gradients, a rapid profile expansion occurs at oblique angles in which ions are pulled back toward the laser by hot electrons circulating at the front of the target. The corresponding enhancement in K alpha yield under these conditions seen in the present experiment represents strong evidence for this suprathermal shelf formation effect.
000005853 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000005853 542__ $$2Crossref$$i2009-08-27$$uhttp://link.aps.org/licenses/aps-default-license
000005853 588__ $$aDataset connected to Web of Science
000005853 65320 $$2Author$$acopper
000005853 65320 $$2Author$$aelectron density
000005853 65320 $$2Author$$ahigh-speed optical techniques
000005853 65320 $$2Author$$aplasma density
000005853 65320 $$2Author$$aplasma production by laser
000005853 65320 $$2Author$$aplasma simulation
000005853 65320 $$2Author$$aplasma X-ray sources
000005853 65320 $$2Author$$atitanium
000005853 650_7 $$2WoSType$$aJ
000005853 7001_ $$0P:(DE-HGF)0$$aNicoul, M.$$b1
000005853 7001_ $$0P:(DE-HGF)0$$aShymanovich, U.$$b2
000005853 7001_ $$0P:(DE-HGF)0$$aTarasevitch, A.$$b3
000005853 7001_ $$0P:(DE-HGF)0$$aZhou, P.$$b4
000005853 7001_ $$0P:(DE-HGF)0$$aSokolowski-Tinten, K.$$b5
000005853 7001_ $$0P:(DE-HGF)0$$avon der Linde, D.$$b6
000005853 7001_ $$0P:(DE-HGF)0$$aMasek, M.$$b7
000005853 7001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b8$$uFZJ
000005853 7001_ $$0P:(DE-HGF)0$$aTeubner, U.$$b9
000005853 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.80.026404$$bAmerican Physical Society (APS)$$d2009-08-27$$n2$$p026404$$tPhysical Review E$$v80$$x1539-3755$$y2009
000005853 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.80.026404$$gVol. 80, p. 026404$$n2$$p026404$$q80<026404$$tPhysical review / E$$v80$$x1539-3755$$y2009
000005853 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.80.026404
000005853 8564_ $$uhttps://juser.fz-juelich.de/record/5853/files/PhysRevE.80.026404.pdf$$yOpenAccess
000005853 8564_ $$uhttps://juser.fz-juelich.de/record/5853/files/PhysRevE.80.026404.gif?subformat=icon$$xicon$$yOpenAccess
000005853 8564_ $$uhttps://juser.fz-juelich.de/record/5853/files/PhysRevE.80.026404.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000005853 8564_ $$uhttps://juser.fz-juelich.de/record/5853/files/PhysRevE.80.026404.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000005853 8564_ $$uhttps://juser.fz-juelich.de/record/5853/files/PhysRevE.80.026404.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000005853 909CO $$ooai:juser.fz-juelich.de:5853$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000005853 9141_ $$y2009
000005853 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005853 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000005853 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000005853 9131_ $$0G:(DE-Juel1)FUEK411$$aDE-HGF$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000005853 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000005853 970__ $$aVDB:(DE-Juel1)113743
000005853 980__ $$aVDB
000005853 980__ $$aConvertedRecord
000005853 980__ $$ajournal
000005853 980__ $$aI:(DE-Juel1)JSC-20090406
000005853 980__ $$aUNRESTRICTED
000005853 9801_ $$aFullTexts
000005853 999C5 $$1T. Feurer$$2Crossref$$9-- missing cx lookup --$$a10.1007/s003400000456$$p15 -$$tAppl. Phys. B: Lasers Opt.$$v72$$y2001
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.871318
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.860694
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0741-3335/38/6/001
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.4846
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/epl/i2002-00366-3
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s003400050034
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.871481
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/37317
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/18631
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01490
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1104739
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.65.036402
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.62.7232
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2645310
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.68.056408
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.65.066411
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.59.52
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.68.1535
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.70.794
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.871525
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-4075/29/19/008
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.74.027401
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1946915
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1383571
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.35.L154
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s003400050585
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF00325515
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.56.7179
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.60.2209
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2093767
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1514263
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2178775
000005853 999C5 $$1R. Rix$$2Crossref$$oR. Rix Diplomarbeit 1999$$tDiplomarbeit$$y1999
000005853 999C5 $$1W. L. Kruer$$2Crossref$$oW. L. Kruer The Physics of Laser Plasma Interaction 1988$$tThe Physics of Laser Plasma Interaction$$y1988
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.54.4167
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.62.023816
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.873335
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.1055
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.71.016406
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.13.1278
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.73.664
000005853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.810