000058568 001__ 58568
000058568 005__ 20180211163830.0
000058568 0247_ $$2DOI$$a10.1016/j.cpc.2008.08.006
000058568 0247_ $$2WOS$$aWOS:000262065100003
000058568 037__ $$aPreJuSER-58568
000058568 041__ $$aeng
000058568 082__ $$a004
000058568 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000058568 084__ $$2WoS$$aPhysics, Mathematical
000058568 1001_ $$0P:(DE-HGF)0$$aCundy, N.$$b0
000058568 245__ $$aNumerical Methods for the QCD Overlap Operator IV: Hybrid Monte Carlo
000058568 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2009
000058568 300__ $$a26 - 54
000058568 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058568 3367_ $$2DataCite$$aOutput Types/Journal article
000058568 3367_ $$00$$2EndNote$$aJournal Article
000058568 3367_ $$2BibTeX$$aARTICLE
000058568 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058568 3367_ $$2DRIVER$$aarticle
000058568 440_0 $$01439$$aComputer Physics Communications$$v180$$x0010-4655$$y1
000058568 500__ $$aRecord converted from VDB: 12.11.2012
000058568 520__ $$aThe computational costs of calculating the matrix sign function of the overlap operator together with fundamental numerical problems related to the discontinuity of the sign function in the kernel eigenvalues are the major obstacle towards simulations with dynamical overlap fermions using the Hybrid Monte Carlo algorithm. In a previous paper of the present series we introduced optimal numerical approximation of the sign function and have developed highly advanced preconditioning and relaxation techniques which speed up the inversion of the overlap operator by nearly an order of magnitude.In this fourth paper of the series we construct an HMC algorithm for overlap fermions. We approximate the matrix sign function using the Zolotarev rational approximation, treating the smallest eigenvalues of the Wilson operator exactly within the fermionic force. Based on this we derive the fermionic force for the overlap operator. We explicitly solve the problem of the Dirac delta-function terms arising through zero crossings of eigenvalues of the Wilson operator. The main advantage of scheme is that its energy violations scale better than O(Delta tau(2)) and thus are comparable with the violations of the standard leapfrog algorithm over the course of a trajectory. We explicitly prove that our algorithm satisfies reversibility and area conservation. We present test results from our algorithm on 4(4), 6(4), and 8(4) lattices. (C) 2008 Elsevier B.V. All rights reserved.
000058568 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000058568 588__ $$aDataset connected to Web of Science
000058568 650_7 $$2WoSType$$aJ
000058568 65320 $$2Author$$aLattice quantum chromodynamics
000058568 65320 $$2Author$$aOverlap fermions
000058568 65320 $$2Author$$aHybrid Monte Carlo
000058568 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b1$$uFZJ
000058568 7001_ $$0P:(DE-Juel1)VDB57262$$aArnold, G.$$b2$$uFZJ
000058568 7001_ $$0P:(DE-HGF)0$$aFrommer, A.$$b3
000058568 7001_ $$0P:(DE-Juel1)132179$$aLippert, T.$$b4$$uFZJ
000058568 7001_ $$0P:(DE-HGF)0$$aSchilling, K.$$b5
000058568 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2008.08.006$$gVol. 180, p. 26 - 54$$p26 - 54$$q180<26 - 54$$tComputer physics communications$$v180$$x0010-4655$$y2009
000058568 8567_ $$uhttp://dx.doi.org/10.1016/j.cpc.2008.08.006
000058568 909CO $$ooai:juser.fz-juelich.de:58568$$pVDB
000058568 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000058568 9141_ $$y2009
000058568 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000058568 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000058568 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x1
000058568 970__ $$aVDB:(DE-Juel1)92268
000058568 980__ $$aVDB
000058568 980__ $$aConvertedRecord
000058568 980__ $$ajournal
000058568 980__ $$aI:(DE-Juel1)JSC-20090406
000058568 980__ $$aI:(DE-82)080012_20140620
000058568 980__ $$aUNRESTRICTED
000058568 981__ $$aI:(DE-Juel1)VDB1346