000058657 001__ 58657 000058657 005__ 20211109141620.0 000058657 0247_ $$2DOI$$a10.1088/1367-2630/9/10/396 000058657 0247_ $$2WOS$$aWOS:000250600300012 000058657 0247_ $$2Handle$$a2128/28963 000058657 037__ $$aPreJuSER-58657 000058657 041__ $$aeng 000058657 082__ $$a530 000058657 084__ $$2WoS$$aPhysics, Multidisciplinary 000058657 1001_ $$0P:(DE-HGF)0$$avon Bergmann, K.$$b0 000058657 245__ $$aComplex magnetism of the Fe monolayer on Ir(111) 000058657 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2007 000058657 300__ $$a396 000058657 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000058657 3367_ $$2DataCite$$aOutput Types/Journal article 000058657 3367_ $$00$$2EndNote$$aJournal Article 000058657 3367_ $$2BibTeX$$aARTICLE 000058657 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000058657 3367_ $$2DRIVER$$aarticle 000058657 440_0 $$08201$$aNew Journal of Physics$$v9$$x1367-2630 000058657 500__ $$aRecord converted from VDB: 12.11.2012 000058657 520__ $$aThe electronic and magnetic properties of Fe on Ir(111) have been investigated experimentally by spin-polarized scanning tunneling microscopy (SP-STM) and theoretically by first-principles calculations based on density functional theory. While the growth of an Fe monolayer is in-plane commensurate, deposition of a double-layer shows a rearrangement of atoms due to strain relief accompanied by local variations of the electronic structure. Both stackings of the monolayer, i.e. face centered cubic (fcc) and hexagonal closed packed (hcp), are observed experimentally. The magnetic structure of both types is imaged with SP-STM. From these experiments, we propose a nanoscale magnetic mosaic structure for the fcc-stacking with 15 atoms in the unit cell. For hcp-stacking, the tunneling spectra are similar to the fcc case, however, the magnetic contrast in the SP-STM images is not as obvious. In our first-principles calculations, a collinear antiferromagnetic (AFM) state with a 15 atom in-plane unit cell (AFM 7 : 8 state) is found to be more favorable than the ferromagnetic state for both fcc- and hcp-stacking. Calculated SP-STM images and spectra are also in good agreement with the experimental data for the fcc case. We performed spin spiral calculations which are mapped to a classical Heisenberg model to obtain the exchange-interaction constants. From these calculations, it is found that the AFM 7 : 8 state is energetically more favorable than all solutions of the classical Heisenberg model. While the obtained magnetic exchange constants are rather similar for the fcc and hcp stacking, a comparison with the experiments indicates that competing interactions could be responsible for the differences observed in the magnetically sensitive measurements. 000058657 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000058657 588__ $$aDataset connected to Web of Science 000058657 650_7 $$2WoSType$$aJ 000058657 7001_ $$0P:(DE-HGF)0$$aHeinze, S.$$b1 000058657 7001_ $$0P:(DE-HGF)0$$aBode, M.$$b2 000058657 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b3$$uFZJ 000058657 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b4$$uFZJ 000058657 7001_ $$0P:(DE-HGF)0$$aWiesendanger, R.$$b5 000058657 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/9/10/396$$gVol. 9, p. 396$$p396$$q9<396$$tNew journal of physics$$v9$$x1367-2630$$y2007 000058657 8567_ $$uhttp://dx.doi.org/10.1088/1367-2630/9/10/396 000058657 8564_ $$uhttps://juser.fz-juelich.de/record/58657/files/von_Bergmann_2007_New_J._Phys._9_396.pdf$$yOpenAccess 000058657 909CO $$ooai:juser.fz-juelich.de:58657$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery 000058657 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000058657 9141_ $$y2007 000058657 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000058657 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000058657 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0 000058657 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000058657 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2 000058657 970__ $$aVDB:(DE-Juel1)92422 000058657 980__ $$aVDB 000058657 980__ $$aConvertedRecord 000058657 980__ $$ajournal 000058657 980__ $$aI:(DE-Juel1)PGI-1-20110106 000058657 980__ $$aI:(DE-82)080009_20140620 000058657 980__ $$aI:(DE-Juel1)VDB1045 000058657 980__ $$aUNRESTRICTED 000058657 9801_ $$aFullTexts 000058657 981__ $$aI:(DE-Juel1)PGI-1-20110106 000058657 981__ $$aI:(DE-Juel1)VDB1045 000058657 981__ $$aI:(DE-Juel1)VDB881