000058664 001__ 58664
000058664 005__ 20180211191352.0
000058664 0247_ $$2pmid$$apmid:17318516
000058664 0247_ $$2DOI$$a10.1007/s00216-007-1166-6
000058664 0247_ $$2WOS$$aWOS:000245292200015
000058664 037__ $$aPreJuSER-58664
000058664 041__ $$aeng
000058664 082__ $$a540
000058664 084__ $$2WoS$$aBiochemical Research Methods
000058664 084__ $$2WoS$$aChemistry, Analytical
000058664 1001_ $$0P:(DE-Juel1)VDB35518$$aHan, B.$$b0$$uFZJ
000058664 245__ $$aAdsorption and Self-assembly of Aromatic Carboxylic Acids on Au/electrolyte Interfaces
000058664 260__ $$aBerlin$$bSpringer$$c2007
000058664 300__ $$a121 - 129
000058664 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058664 3367_ $$2DataCite$$aOutput Types/Journal article
000058664 3367_ $$00$$2EndNote$$aJournal Article
000058664 3367_ $$2BibTeX$$aARTICLE
000058664 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058664 3367_ $$2DRIVER$$aarticle
000058664 440_0 $$08664$$aAnalytical and Bioanalytical Chemistry$$v388$$x1618-2642
000058664 500__ $$aRecord converted from VDB: 12.11.2012
000058664 520__ $$aThe adsorption and self-assembly of benzoic acid (BA), isophthalic acid (IA), and trimesic acid (TMA) on Au(111) single crystals and on Au(111-25 nm) quasi-single crystalline film electrodes have been investigated in 0.1 M HClO4 by combining in situ surface-enhanced infrared reflection absorption spectroscopy (SEIRAS) and scanning tunneling microscopy (STM) with cyclic voltammetry. All three acids are physisorbed on the electrode surface in a planar orientation at negative charge densities. Excursion to positive charge densities (or more positive potentials) causes an orientation change from planar to perpendicular. Chemisorbed structures are formed through the coordination of a deprotonated carboxyl group to the positively charged electrode surface. The three acid molecules assemble in different ordered patterns, which are controlled by pi-stacking (BA) or intermolecular hydrogen bonds between COOH groups (IA, TMA). A detailed analysis of the potential and time dependencies of the nu(C=O), nus(OCO), and nu(C-OH) vibration modes shows that the strength of lateral interactions increases upon chemisorption with an increasing number of COOH groups in the sequence of BA<IA<TMA. The vibration bands shift to higher wavenumbers due to dipole-dipole coupling, Stark tuning, and electron back donation from the electrode to COO-. In addition, an "indirect" electron donation to the COOH groups takes place via the conjugated molecular skeleton superimposed on the intermolecular hydrogen bonding.
000058664 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000058664 588__ $$aDataset connected to Web of Science, Pubmed
000058664 650_2 $$2MeSH$$aAdsorption
000058664 650_2 $$2MeSH$$aBenzoic Acid: chemistry
000058664 650_2 $$2MeSH$$aElectrochemistry
000058664 650_2 $$2MeSH$$aElectrolytes: chemistry
000058664 650_2 $$2MeSH$$aGold: chemistry
000058664 650_2 $$2MeSH$$aModels, Molecular
000058664 650_2 $$2MeSH$$aPhthalic Acids: chemistry
000058664 650_2 $$2MeSH$$aSurface Properties
000058664 650_2 $$2MeSH$$aTricarboxylic Acids: chemistry
000058664 650_7 $$00$$2NLM Chemicals$$aElectrolytes
000058664 650_7 $$00$$2NLM Chemicals$$aPhthalic Acids
000058664 650_7 $$00$$2NLM Chemicals$$aTricarboxylic Acids
000058664 650_7 $$0121-91-5$$2NLM Chemicals$$aisophthalate
000058664 650_7 $$0554-95-0$$2NLM Chemicals$$atrimesic acid
000058664 650_7 $$065-85-0$$2NLM Chemicals$$aBenzoic Acid
000058664 650_7 $$07440-57-5$$2NLM Chemicals$$aGold
000058664 650_7 $$2WoSType$$aJ
000058664 65320 $$2Author$$aaromatic carboxylic acid
000058664 65320 $$2Author$$aadsorption
000058664 65320 $$2Author$$aself-assembly
000058664 65320 $$2Author$$aelectrochemistry
000058664 65320 $$2Author$$aSEIRAS
000058664 65320 $$2Author$$aSTM
000058664 7001_ $$0P:(DE-Juel1)VDB2436$$aLi, Z.$$b1$$uFZJ
000058664 7001_ $$0P:(DE-Juel1)VDB9859$$aWandlowski, Th.$$b2$$uFZJ
000058664 773__ $$0PERI:(DE-600)1459122-4$$a10.1007/s00216-007-1166-6$$gVol. 388, p. 121 - 129$$p121 - 129$$q388<121 - 129$$tAnalytical and bioanalytical chemistry$$v388$$x1618-2642$$y2007
000058664 8567_ $$uhttp://dx.doi.org/10.1007/s00216-007-1166-6
000058664 909CO $$ooai:juser.fz-juelich.de:58664$$pVDB
000058664 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000058664 9141_ $$y2007
000058664 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000058664 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000058664 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000058664 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000058664 970__ $$aVDB:(DE-Juel1)92432
000058664 980__ $$aVDB
000058664 980__ $$aConvertedRecord
000058664 980__ $$ajournal
000058664 980__ $$aI:(DE-Juel1)PGI-3-20110106
000058664 980__ $$aI:(DE-Juel1)VDB381
000058664 980__ $$aI:(DE-82)080009_20140620
000058664 980__ $$aUNRESTRICTED
000058664 981__ $$aI:(DE-Juel1)PGI-3-20110106
000058664 981__ $$aI:(DE-Juel1)VDB381
000058664 981__ $$aI:(DE-Juel1)VDB881