001     58666
005     20180211182058.0
024 7 _ |2 pmid
|a pmid:21730437
024 7 _ |2 DOI
|a 10.1088/0957-4484/18/42/424004
024 7 _ |2 WOS
|a WOS:000249735800005
037 _ _ |a PreJuSER-58666
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Meszaros, G.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB45470
245 _ _ |a Current Measurements in a wide Dynamic range - Applications to Electrochemical Nanotechnology
260 _ _ |a Bristol
|b IOP Publ.
|c 2007
300 _ _ |a 424004
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Nanotechnology
|x 0957-4484
|0 4475
|v 18
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Current measurements in a wide dynamic range from low picoamperes up to a few milliamperes are usually carried by implementing logarithmic current-to-voltage converter circuits. Conductance studies in nanoscale metal | molecule | metal junctions require measurements with a high dynamic range, good accuracy and reasonable speed simultaneously. In this work we propose two novel circuit solutions which comply with these conditions: one is based on a high-accuracy, fine-tunable logarithmic current-to-voltage converter. Another circuit implements a double-output (or multiple-output) linear current-to-voltage converter, for which the problem of range-switching has been circumvented. Both circuits were applied in constructing a low-current bipotentiostat dedicated to the electrochemical formation of molecular-scale gaps, and a novel scanning tunnelling microscope preamplifier stage for current-distance spectroscopy studies.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Li, C.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB63965
700 1 _ |a Pobelov, I.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB45469
700 1 _ |a Wandlowski, Th.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB9859
773 _ _ |a 10.1088/0957-4484/18/42/424004
|g Vol. 18, p. 424004
|p 424004
|q 18<424004
|0 PERI:(DE-600)1362365-5
|t Nanotechnology
|v 18
|y 2007
|x 0957-4484
856 7 _ |u http://dx.doi.org/10.1088/0957-4484/18/42/424004
909 C O |o oai:juser.fz-juelich.de:58666
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)92435
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21