000058850 001__ 58850
000058850 005__ 20180211170127.0
000058850 0247_ $$2pmid$$apmid:18761499
000058850 0247_ $$2DOI$$a10.1111/j.1438-8677.2008.00062.x
000058850 0247_ $$2WOS$$aWOS:000258288200009
000058850 037__ $$aPreJuSER-58850
000058850 041__ $$aeng
000058850 082__ $$a580
000058850 084__ $$2WoS$$aPlant Sciences
000058850 1001_ $$0P:(DE-HGF)0$$aWesthoff, M.$$b0
000058850 245__ $$aThe mechanisms of refilling of the xylem conduits and bleeding of tall birch during spring
000058850 260__ $$aOxford [u.a.] :Wiley- Blackwell$$bWiley-Blackwell - STM$$c2008
000058850 300__ $$a604 - 623
000058850 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000058850 3367_ $$2DataCite$$aOutput Types/Journal article
000058850 3367_ $$00$$2EndNote$$aJournal Article
000058850 3367_ $$2BibTeX$$aARTICLE
000058850 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000058850 3367_ $$2DRIVER$$aarticle
000058850 440_0 $$010981$$aPlant Biology$$v10$$x1435-8603$$y5
000058850 500__ $$aRecord converted from VDB: 12.11.2012
000058850 520__ $$aSeasonal variations in osmolality and components of xylem sap in tall birch trees were determined using several techniques. Xylem sap was extracted from branch and trunk sections of 58 trees using the very rapid gas bubble-based jet-discharge method. The 5-cm long wood pieces were taken at short intervals over the entire tree height. The data show that large biphasic osmolality gradients temporarily exist within the conducting xylem conduits during leaf emergence (up to 272 mosmol x kg(-1) at the apex). These gradients (arising mainly from glucose and fructose) were clearly held within the xylem conduit as demonstrated by (1)H NMR imaging of intact twigs. Refilling experiments with benzene, sucrose infusion, electron and light microscopy, as well as (1)H NMR chemical shift microimaging provided evidence that the xylem of birch represents a compartment confined by solute-reflecting barriers (radial: lipid linings/lipid bodies; axial: presumably air-filled spaces). These features allow transformation of osmolality gradients into osmotic pressure gradients. Refilling of the xylem occurs by a dual mechanism: from the base (by root pressure) and from the top (by hydrostatic pressure generated by xylem-bound osmotic pressure). The generation of osmotic pressure gradients was accompanied by bleeding. Bleeding could be observed at a height of up to 21 m. Bleeding rates measured at a given height decreased exponentially with time. Evidence is presented that the driving force for bleeding is the weight of the static water columns above the bleeding point. The pressure exerted by the water columns and the bleeding volume depend on the water-filling status of (communicating) vessels.
000058850 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000058850 588__ $$aDataset connected to Web of Science, Pubmed
000058850 650_2 $$2MeSH$$aBetula: physiology
000058850 650_2 $$2MeSH$$aCarbohydrate Metabolism
000058850 650_2 $$2MeSH$$aElectrolytes: metabolism
000058850 650_2 $$2MeSH$$aMagnetic Resonance Spectroscopy
000058850 650_2 $$2MeSH$$aOsmolar Concentration
000058850 650_2 $$2MeSH$$aOsmotic Pressure
000058850 650_2 $$2MeSH$$aPlant Roots: physiology
000058850 650_2 $$2MeSH$$aSeasons
000058850 650_2 $$2MeSH$$aTrees: physiology
000058850 650_2 $$2MeSH$$aWater: physiology
000058850 650_2 $$2MeSH$$aXylem: physiology
000058850 650_7 $$00$$2NLM Chemicals$$aElectrolytes
000058850 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000058850 650_7 $$2WoSType$$aJ
000058850 65320 $$2Author$$aBetula pendula (birch)
000058850 65320 $$2Author$$alipids
000058850 65320 $$2Author$$aosmotic pressure gradients
000058850 65320 $$2Author$$aroot pressure
000058850 65320 $$2Author$$asap bleeding
000058850 65320 $$2Author$$asugars
000058850 65320 $$2Author$$axylem refilling
000058850 7001_ $$0P:(DE-Juel1)129397$$aSchneider, H.$$b1$$uFZJ
000058850 7001_ $$0P:(DE-HGF)0$$aZimmermann, D.$$b2
000058850 7001_ $$0P:(DE-HGF)0$$aMimietz, S.$$b3
000058850 7001_ $$0P:(DE-HGF)0$$aStinzing, A.$$b4
000058850 7001_ $$0P:(DE-HGF)0$$aWegner, L. H.$$b5
000058850 7001_ $$0P:(DE-HGF)0$$aKaiser, W.$$b6
000058850 7001_ $$0P:(DE-HGF)0$$aKrohne, G.$$b7
000058850 7001_ $$0P:(DE-HGF)0$$aShirley, St.$$b8
000058850 7001_ $$0P:(DE-HGF)0$$aJakob, P.$$b9
000058850 7001_ $$0P:(DE-HGF)0$$aBamberg, E.$$b10
000058850 7001_ $$0P:(DE-HGF)0$$aBentrup, F.-W.$$b11
000058850 7001_ $$0P:(DE-HGF)0$$aZimmermann, U.$$b12
000058850 773__ $$0PERI:(DE-600)2026390-9$$a10.1111/j.1438-8677.2008.00062.x$$gVol. 10, p. 604 - 623$$p604 - 623$$q10<604 - 623$$tPlant biology$$v10$$x1435-8603$$y2008
000058850 8567_ $$uhttp://dx.doi.org/10.1111/j.1438-8677.2008.00062.x
000058850 909CO $$ooai:juser.fz-juelich.de:58850$$pVDB
000058850 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000058850 9141_ $$y2008
000058850 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000058850 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000058850 970__ $$aVDB:(DE-Juel1)92733
000058850 980__ $$aVDB
000058850 980__ $$aConvertedRecord
000058850 980__ $$ajournal
000058850 980__ $$aI:(DE-Juel1)IBG-2-20101118
000058850 980__ $$aUNRESTRICTED
000058850 981__ $$aI:(DE-Juel1)IBG-2-20101118
000058850 981__ $$aI:(DE-Juel1)ICG-3-20090406