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Abstract 

Abstract
A number of high-Cr ferritic steels have been investigated as possible construction materials 
(interconnectors) for Solid Oxide Fuel Cells (SOFCs). The mentioned materials have the 
advantage of a higher electronic conductivity, lower cost and easier fabrication than so far 
used lanthanum chromite-based ceramics. A large number of ferritic steels are commercially 
available in a wide range of compositions, however it seems that none of them can fulfil all 
requirements for the SOFC interconnector application. Therefore the main emphasis was put 
to the investigation of the high temperature properties of recently introduced high chromium 
ferritic steels especially designed for SOFC applications.  

The scale formation mechanisms were investigated during oxidation times ranging from a few 
minutes up to 6000 hours. For scale characterization a number of conventional analysis 
techniques such as optical metallography, scanning electron microscopy and X-ray diffraction 
were used in combination with two-stage oxidation studies using 18O-tracer. It was found that 
the growth rates of the scales were not only governed by the main scale forming alloying 
elements Cr and Mn, but to a substantial extent by minor additions of Si and Al. At the test 
temperatures of 800°C and 900°C these latter elements affect the scale formation although 
they are not directly incorporated in the surface scales. 

SOFC market requirements lead in many cases to the demand for a reduction of the fuel cell 
size and/or weight and thus of the interconnector thickness. Therefore, the main emphasis was 
made to investigate changes in the oxidation behaviour in the case of thin components. It was 
found that with decreasing sample thickness the lifetime of the mentioned steels decreases due 
to breakaway phenomena. This effect is caused by faster exhaustion of the chromium 
reservoir from the bulk alloy in case of thinner components. The observed lifetime limits can 
be predicted with reasonable accuracy by a theoretical model, using oxide growth rate 
parameters, initial alloy Cr content and critical Cr content required for protective chromia 
scale formation. In the calculation of the Cr-reservoir exhaustion it has, however, to be taken 
into account, that during air exposure the oxidation rates increase with decreasing specimen 
thickness. The possible explanation of this effect is discussed on the basis of scale formation 
mechanisms involving microcrack formation in the surface oxide scale and depletion of major 
and minor alloying additions in the bulk alloy.  

The electrical conductivity of the interconnect is a crucial property for SOFC application 
whereby the conductivity of the chromium based oxide scale which forms during high 
temperature service has to be taken into account in the overall conductivity value. Therefore 
experimental data concerning the electrical conductivity of the surface oxide scales formed in 
the temperature range 600-800°C on the investigated ferritic steels have been determined. The 
data are correlated with oxide scale morphologies and scale formation mechanisms and the 
results are compared with those obtained for two “pure chromia” forming materials.  





Zusammenfassung 

Zusammenfassung
Es wurden eine Reihe ferritischer, hochlegierter Cr-Stähle als mögliche Konstruktions-
werkstoffe für Interkonnektoren in Festoxid-Brennstoffzellen (SOFCs) entwickelt. Diese 
Stähle sind preiswert, einfacher herzustellen und besitzen eine höhere elektrische 
Leitfähigkeit als das bisher verwendete, keramische Lanthanchromit. Es sind viele ferritische 
Stähle mit einer großen Bandbreite von Zusammensetzungen verfügbar, jedoch erfüllt keiner 
von ihnen die Anforderungen eines Brennstoffzellen-Interkonnektors vollständig. Deswegen 
wurde der Schwerpunkt der vorliegenden Arbeit auf die Untersuchung der Eigenschaften der 
aktuell für SOFC Anwendungen entwickelten, ferritischen, hochlegierten Cr-Stähle gelegt.

Das Oxidationsverhalten wurde zwischen einigen Minuten und 6000 h Oxidationsdauer 
untersucht. Zahlreiche Analysemethoden, wie die optische Mikroskopie, die Elektronen-
mikroskopie (REM) mit Energiedispersiver Röntgenanalyse (EDX), die Röntgenfeinstruktur-
analyse (XRD), die Sekundärneutralteilchen-Massenspektrometrie (SNMS) und die Raman 
Spektroskopie (RS) wurden für die Charakterisierung der Oxidationsprodukte verwendet. Die 
Oxidationsrate zeigte sich nicht nur von den deckschichtbildenden Elementen Cr und Mn 
abhängig, sondern auch von den Legierungszusätzen Si und Al. Bei Versuchstemperaturen 
von 800 und 900°C beeinflussen diese geringen Legierungszusätze die Oxidschichtbildung,
obwohl sie nicht direkt in die Oxidschicht eingebaut werden.

Der Brennstoffzellenmarkt fordert in vielen Fällen eine geringere Größe und/oder geringeres 
Gewicht der Brennstoffzellen und damit eine Verringerung der Dicke der Interkonnektoren-
bleche. Deswegen ist es besonders wichtig die Veränderung des Oxidationsverhaltens bei 
besonders dünnen Komponenten zu untersuchen. Es fällt auf, dass die Lebensdauer der 
untersuchten Stähle, aufgrund von breakaway (Eisenoxidbildung), mit abnehmender Proben-
dicke abnimmt. Dies geschieht, da das bei dünneren Komponenten geringere Chromreservoir 
der Probe schneller verarmt. Die Lebensdauer kann durch ein theoretisches Modell mit guter 
Näherung vorhergesagt werden. In das Modell fließen die Wachstumsparameter der 
Oxidschicht, der Ausgangschromgehalt der Legierung und der kritische Chromgehalt (unter 
dem sich keine schützende Chromoxidschicht mehr bilden kann) ein. In die Berechnung der 
Chromverarmung wird einbezogen, dass die Oxidationsrate in Luft mit abnehmender 
Probendicke zunimmt. Als mögliche Erklärung dieses Effekts werden Oxidschichtbildungs-
mechanismen, wie Mikrorissbildung in der Oberfläche der Oxidschicht und Verarmung der 
Legierungselemente und – zusätze diskutiert. 

Die elektrische Leitfähigkeit eines Interkonnektors ist ein ausschlaggebender Faktor bei 
Brennstoffzellenanwendungen. Hierbei muss mit der Leitfähigkeit der Oxidschicht gerechnet 
werden, die sich bei den hohen Betriebstemperaturen bildet. Deswegen wurden Daten über 
die Leitfähigkeit an der Oberfläche der Oxidschicht bei Temperaturen zwischen 600-800°C 
ermittelt. Diese Daten wurden in Zusammenhang mit der Morphologie der Oxidschicht und 
deren Bildungsmechanismus gebracht und mit den Werten von zwei rein-chromoxid-
bildenenden Werkstoffen verglichen. 





Table of contents 

1. Introduction ........................................................................................................................ 1 

2. Aim of the studies .............................................................................................................. 2 

3. Literature review ................................................................................................................ 3 

3.1 Fuel cells ........................................................................................................................ 3 

3.1.1 Historical overview .................................................................................................... 3 

3.1.2 Principle of operation ................................................................................................. 3 

3.1.3 Types of fuel cells ...................................................................................................... 4

3.1.4 Solid oxide fuel cells .................................................................................................. 6

SOFC components...................................................................................................................... 7 

Cell configuration and stack design ........................................................................................... 8

3.1.5 SOFC stack development at Research Centre Jülich ................................................. 9 

3.2 Basics of oxidation ....................................................................................................... 10

3.2.1 Thermodynamics considerations.............................................................................. 10 

3.2.2 Kinetics of oxidation ................................................................................................ 13 

3.3 High temperature alloys for SOFC interconnect applications ..................................... 16 

3.3.1 Requirements for SOFC interconnectors ................................................................. 16 

3.3.2 Chromia formers for SOFC applications ................................................................. 17 

Cr-based alloys for SOFC application ..................................................................................... 19 

Commercial ferritic steels as SOFC interconnectors ............................................................... 20 

Ferritic steels designed for SOFC application.......................................................................... 23 

Protective coatings for metallic SOFC interconnectors ........................................................... 25 

3.4 Oxidation kinetics and lifetime prediction of the ferritic steels ................................... 26 

3.4.1 Lifetime prediction of the alumina forming ferritic steels ....................................... 26 

3.4.2 Lifetime limits of chromia forming ferritic steels .................................................... 29 

3.5 Electrical conductivity of chromia ............................................................................... 31 

3.5.1 Electrical conductivity - introduction....................................................................... 31 

3.5.2 Electrical conductivity of bulk chromium oxide...................................................... 33 

3.5.3 Electrical conductivity of thermally grown chromia................................................ 35 

3.6 Summary of the literature review................................................................................. 37 

4. Experimental .................................................................................................................... 38 

4.1 Materials....................................................................................................................... 38 

4.2 Specimen preparation................................................................................................... 38 

4.3 Experimental procedures for oxidation testing ............................................................ 40 

4.3.1 Cyclic long-term oxidation studies .......................................................................... 41 

4.3.2 Thermogravimetry (TG)........................................................................................... 42 



Table of contents

4.3.3 Discontinuous long-term oxidation studies.............................................................. 42 

4.3.4 Isothermal oxidation studies for SNMS investigations............................................ 42 

4.3.5 Short-term isothermal / cyclic oxidation studies...................................................... 42 

4.3.6 Contact resistance experiments ................................................................................ 43 

4.4 Microstructural analysis ............................................................................................... 44 

4.5 Noble metal coatings.................................................................................................... 45 

Results and discussion.............................................................................................................. 46 

5. Growth mechanisms of oxide scales on ferritic steels for SOFC application.................. 46 

5.1 Cyclic long-term oxidation behaviour of thick components ........................................ 46 

5.1.1 Cyclic oxidation behaviour at 800°C ....................................................................... 46 

5.1.2 Cyclic oxidation behaviour at 900°C ....................................................................... 49 

5.2 Selection of the steels for further investigations .......................................................... 52 

5.3 Oxidation mechanism of JS-3 / Crofer 22 APU type steels......................................... 52 

5.3.1 Long-term oxidation behaviour................................................................................ 52 

5.3.2 Early stages of oxidation of JS-3 and Crofer A ....................................................... 54 

5.3.3 Effect of minor alloying additions on oxidation behaviour of Crofer type steels.... 61 

5.3.4 Effect of water vapour on the air oxidation behaviour of Crofer type steels ........... 65 

5.3.5 Optimisation of steel Crofer 22 APU (Crofer B) ..................................................... 67 

5.4 Summary of differences in oxidation behaviour of high-Cr ferritic steels .................. 69 

6. Oxidation induced lifetime limits of chromia forming ferritic steels............................... 71 

6.1 Cyclic oxidation behaviour of components with different thicknesses........................ 71 

6.1.1 Cyclic oxidation behaviour of selected commercial steels ...................................... 71 

Steel Crofer A........................................................................................................................... 71 

Steel JS-3.................................................................................................................................. 78 

Steel Crofer B........................................................................................................................... 81 

Steel ZMG232 .......................................................................................................................... 83 

6.1.2 Cyclic oxidation behaviour of selected model alloys............................................... 85 

Model steel FeCrLa (Mn free steel, HCE) ............................................................................... 86 

Model steel FeCrMnY (high Mn concentration, HCH) ........................................................... 88 

6.1.3 Oxidation rate dependence on the specimen thickness – discussion ....................... 90 

Depletion of chromium ............................................................................................................ 90 

Depletion of minor alloying elements...................................................................................... 91 

Internal oxidation ..................................................................................................................... 94 

Doping effect in the oxide scale............................................................................................... 94

Oxide growth and thermally induced stresses.......................................................................... 95 



Table of contents

Elongation effect ...................................................................................................................... 97 

Thermal cycling effect ............................................................................................................. 97 

Effect of water vapour during the air oxidation ....................................................................... 99 

Effect of steel microstructure ................................................................................................. 101

Surface preparation ................................................................................................................ 103 

6.1.4 Summary of specimen thickness effect during cyclic oxidation............................ 104 

6.2 Mechanism of breakaway oxidation .......................................................................... 105 

6.3 Lifetime prediction of chromia forming ferritic steels............................................... 112 

6.4 Summary of studies on oxidation limited life times .................................................. 122 

7. Electrical conductivity of the thermally grown, chromium rich oxide scales................ 124 

7.1 Prediction of the electrical conductivity of thermally grown chromia....................... 128 

7.2 The effect of contact paste on conductivity experiments ........................................... 130 

7.3 Summary of the studies on electrical conductivity of the thermally grown, chromium 

rich oxide scales ..................................................................................................................... 136 

8. Summary and conclusions.............................................................................................. 138 

9. References ...................................................................................................................... 141 

10. Appendix .................................................................................................................... 152 





1.   Introduction

1

1. Introduction

For decades the energy situation in the world has become more and more critical. 

Conventional energy sources are not sufficient to meet the constantly expanded needs of 

humanity so exploration of new energy sources seems to be a huge task for the future. One 

possibility for the alternatives to conventional energy conversion systems is fuel cell 

development. 

One of the most promising fuel cell systems seems to be solid oxide fuel cells (SOFC) 

because they can use fossil fuels as well as pure hydrogen. SOFC development requires the 

united work of broad groups of different engineering branches. One of the tasks is to invent 

the most suitable materials for all SOFC components (anode, cathode, electrolyte and 

interconnect). Based on the SOFC requirements, steels seem to be promising construction 

materials for one of the components - the interconnector plate.

Development of the particular steel is a relatively complicated task because the material needs 

to fulfil several requirements, which sometimes can be even contrary. Based on the 

requirements in respect to oxidation resistance, thermal expansion coefficient and electrical 

conductivity of the surface oxide scale, Cr-based alloys and high Cr- steels seem to be the 

most promising metallic interconnector materials. A large number of ferritic steels are 

commercially available in a wide range of compositions, however it seems that none of them 

can fulfil all requirements for the SOFC interconnector. Therefore, new Cr-based alloys have 

recently been developed especially for SOFC applications. Mentioned materials seem to be 

sufficiently good for most of the envisaged SOFC applications, however it is still necessary to 

improve their composition to design a steel, which possesses excellent properties during 

operation in SOFC relevant atmospheres. 
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2. Aim of the studies 

Planar Solid Oxide Fuel Cells (SOFC’s) operating in the temperature range between 700°C - 

800°C allow the use of metallic materials instead of lanthanum chromite-based ceramics as 

construction materials for SOFC interconnects [Stöver-1]]. Metallic materials have the 

advantage of a higher electronic conductivity, lower cost and easier fabrication than ceramics 

[Quadakkers-1]. Based on the requirements in respect to oxidation resistance and thermal 

expansion coefficient, high chromium ferritic steels seem to be promising interconnect 

materials [Tietz-1].    

In the present studies recently developed SOFC interconnect materials as well as other 

commonly used high-Cr commercial steels were investigated with respect to their oxidation 

behaviour in the temperature range required for SOFC application (700°C - 900°C). SOFC 

market requirements (e.g., in the automotive industry) lead in many cases to the demand for a 

reduction of the fuel cell size and/or weight and thus of the interconnector thickness. 

Therefore, the main emphasis was made to investigate changes in the oxidation behaviour in 

the case of thin components. It is shown that for chromia forming ferritic steel components 

the oxidation limited life is primarily governed by the reservoir of the scale forming alloying 

elements (mainly Cr and Mn), rather than by their absolute concentration in the steel. The 

scale formation mechanisms in the case of the most promising materials were investigated 

during oxidation times ranging from a few minutes up to 6000 hours and the influence of 

minor alloy additions in the steels was also elaborated. For a better understanding of the 

mechanisms of oxidation for high-Cr ferritic steels, several “pure” model alloys were 

prepared and incorporated into the test program.  

The electrical conductivity of the interconnect is a crucial property for SOFC application 

whereby the conductivity of the chromia based oxide scale formed on the metallic surface 

during stack operation has to be taken into account in the overall conductivity value. A wide 

program of conductivity tests for different chromium steels as well as different conducting 

pastes was performed in the temperature range 600°C - 800°C.  
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3. Literature review 

3.1 Fuel cells 

A fuel cell is a device that converts chemical energy directly into electricity during an 

electrochemical process [Stambouli-1]. The operating principles of fuel cells are similar to 

those of batteries however in contrast to batteries – where the chemical energy is stored in 

substances inside the battery – fuel cells are just converting systems, the reagents have to be 

supplied continuously to the fuel cell in order to obtain electricity [Cappadonia-1, Stambouli-

2]. All the fuel cells operate without combusting fuel and thus they are very attractive from 

both energy and environmental standpoints [Song-1]. Although the principal operation of a 

fuel cell has been known since the last century, the necessary technology for producing fuel 

cell systems of high efficiency and acceptable costs at an industrial level has only been 

developed in the last few decades [Cappadonia-1].

3.1.1 Historical overview 

The history of fuel cells starts in 1893 when Sir William Grove constructed first cell using 

porous platinum electrodes and sulphuric acid (H2SO4) as the electrolyte bath [Grove-1, 

Chau-1]. In the 20th century the first important work on the fuel cells field was done by Dr. 

Francis T. Bacon. Dr. Bacon developed porous nickel electrodes and built the first high 

pressure, medium temperature alkaline fuel cell system in the kilowatt-range [Cappadonia-1]. 

The concept of Bacon, after adaptation by Pratt and Whitney, was used as an on-board power 

system for the Apollo missions in the 1960s. Besides, it is important to note that the work of 

Bacon stimulated the start of the current interest in fuel cell technology for sustainable 

stationary and mobile power generation [Acres-1]. From the 1980s the fuel cell research 

started to develop as a wide range of different technological concepts in many countries 

around the world [Stambouli-1]. 

3.1.2 Principle of operation 

The primary components of each fuel cell are an ion conducting electrolyte, a cathode and an 

anode, as shown schematically in figure 3.1. All fuel cells have the same basic operating 

principles [Song-1]. In the simplest example, a fuel such as hydrogen is brought into the 

anode compartment and the oxidant (typically oxygen) into the cathode compartment. Direct 

chemical combustion is prevented by the electrolyte that separates the fuel from the oxidant. 
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Accordingly, half-cell reaction occurs at the anode and cathode, producing ions that can 

traverse the electrolyte, and water as a by-product. The flow of ionic charges through the 

electrolyte is balanced by the flow of electrons through an outside circuit and electrical power 

is obtained [Haile-1].

Figure 3.1: Typical fuel cell configuration 

The nature of the electrolyte, liquid or solid, determines the operating temperature of the fuel 

cell [Stambouli-2]. The ideal fuel cell electrolyte should be high ionically conductive, 

impermeable for gases, electronically resistant and chemically stable under a wide range of 

conditions. Additionally, the electrolyte should exhibit sufficient mechanical and chemical 

integrity to prevent cracks and pore formation during manufacturing or long-term operation. 

The perfect electrode must be porous, electronically and ionically conducting, 

electrochemically active and have a high surface area [Haile-1].  

3.1.3 Types of fuel cells 

At the present status of fuel cell technology, there are six classified types: alkaline fuel cells 

(AFC), phosphoric acid fuel cells (PAFC), molten carbonate fuel cells (MCFC), proton 

exchange membrane fuel cells (PEMFC), solid oxide fuel cells (SOFC) and direct methanol 

fuel cells (DMFC) [Chau-1, Acres-1]. This classification is made on the basis of chemical 

characterization of the electrolyte used as an ionic conductor in the cell (DMFC is an 

exception where the name characterise the fuel used during cell operation). Typical 

characteristics of different fuel cells systems are summarized in Tables 3.1 and 3.2 [Haile-1, 

e-e-

Depleted fuel and 
product gasses  

ElectrolyteAnode Cathode

H2O

O2-
O2

H2O

H2

Fuel (H2)

H+

Oxidant (O2)

or

Depleted oxidant and
product gasses  

A



3.   Literature review

5

Song-1, Stambouli-1, 2, Chau-1, Acres-1, Cappadonia-1, Jiang-1, Dillon-1, Larminie-1, 

Carrette-1].

Type of 

FC
Electrolyte type 

Mobile

ion

Operating

temperature [°C] 

Efficiency

[%]

AFC Potassium hydroxide OH- 50 - 250 50 - 55 

PAFC Phosphoric acid H+ 150 - 250 40 - 50 

DMFC Sulphuric acid or polymer H+ 60 - 200 40 - 55 

PEMFC Polymer H+ 50 - 125 40 - 50 

MCFC Lithium / potassium carbonate mixture CO3
2- 600 - 700 50 - 60 

SOFC Stabilized zirconia O2- 700 - 1000 45 - 60 

Table 3.1: Typical characteristics of fuel cell systems. Part 1 

Type of 

FC

Principle reactions 

[A-anode, C-cathode] 

By-product

formation 
Fuel Oxidant

AFC
A:     H2 + 2OH-  2H2O + 2e-

C:     1/2O2 + 2e- + 2H2O  OH-
H2O (Anode) H2 O2 / Air 

PAFC
A:     H2  2H+ + 2e-

C:     1/2O2 + 2e- + 2H+  H2O
H2O (Cathode) H2 O2 / Air 

DMFC
A:     CH3OH + H2  CO2 + 6H+ + 6e-

C:     3/2O2 + 6H+ + 6e-  3H2O

H2O (Cathode) 

CO2 (Anode) 

Liquid

methanol 
O2 / Air 

PEMFC
A:     H2  2H+ + 2e-

C:     1/2O2 + 2e- + 2H+  H2O
H2O (Cathode) H2 O2 / Air 

MCFC
A:     H2 + CO3

2-  H2O + CO2 + 2e-

C:     1/2O2 + CO2 + 2e-  CO3
2- 

H2O, CO2

(Anode)

Hydrocarbons,

H2, CO 

CO2 / 

O2 / Air 

SOFC
A:     H2 + O2-  H2O + 2e-

C:     1/2O2 + 2e-  O2-
H2O (Anode) 

Hydrocarbons,

H2, CO 
O2 / Air 

Table 3.2: Typical characteristics of fuel cell systems. Part 2 

Detailed characterisation of the systems mentioned above can be found in comprehensive 

references [Larminie-1] and [Carrette-1]. 
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Among all fuel cells types solid electrolyte systems seem to have an advantage because they 

do not contain dangerous corrosive liquids. Thus, many developers prefer polymer electrolyte 

and solid oxide fuel cells to alkali, phosphoric acid or molten carbonate fuel cells [Haile-1].   

3.1.4 Solid oxide fuel cells 

The main features of the SOFC are an all solid-state construction and high temperature 

operation. The combination of these features leads to a number of unique characteristics and 

advantages for this type of fuel cell, including flexibility in cell and stack design, 

manufacturing processes and power plant sizes [Minh-1].  Additionally, SOFC provide a 

major advantage over other fuel cell systems in that they can use fossil fuels as well as pure 

hydrogen [Lu-1]. 

Figure 3.2: Typical SOFC cell configuration [Stambouli-1] 

The history of SOFC started in 1930s when Baur and Preis [Baur-1, Singhal-1, McEvoy-1] 

applied zirconia stabilized with 15 wt% yttria as an electrolyte in the first cell on a laboratory 

scale. The authors used an idea of Nernst who was the first to describe zirconia (ZrO2) as an 

oxygen ion conductor [Nernst-1, Larminie-1]. A typical SOFC configuration is shown in 

Figure 3.2 and Tables 3.1 and 3.2 summarise the characteristics of the SOFC system. 

e-e-

Depleted fuel and 
product gasses  

Electrolyte
(YSZ) 

Anode 
(Ni/YSZ)

Cathode
(LSM)

H2O

O2-
O2

H2

Fuel: H2 or
Hydrocarbons Oxidant: O2 or Air 

Depleted oxidant 

A

H2

H2O O2-
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SOFC components 

Every SOFC cell consists of four main parts: electrolyte, anode, cathode, and interconnect. 

Specific combinations of properties required for SOFC components necessitates the use of 

specifically designed materials and force the development of new advanced SOFC materials. 

Zirconia doped with 8-10 mole % yttria (YSZ) is the most effective electrolyte for the high 

temperature SOFC although several others have been investigated including Bi2O3, CeO2 and 

Ta2O5 [Steele-1]. Zirconia is highly stable in both the reducing and oxidizing environments. 

The ability to conduct O2- ions is brought about by the fluorite crystal structure of zirconia in 

which some of the Zr4+ ions are replaced Y3+ ions. When this ion exchange occurs, a number 

of oxide-ion sites become vacant because of three O2- ions replacing of four O2- ions. Oxide 

ion transport occurs between vacancies located at tetrahedral sites in the perovskite lattice 

[Larmine-1, Skinner-1]. 

Among the SOFC components, the porous anode serves to provide electrochemical reaction 

sites for oxidation of the fuel, allows the fuel and byproducts to be delivered and removed 

from the surface sites, and to provide a path for electrons to be transported from the 

electrolyte/anode reaction sites to the interconnect in the SOFC stack. Porous Ni/YSZ cement 

is currently the most common anode material because of the acceptable thermodynamic 

stability and desirable electrochemical properties [Zhu-1]. 

The most important properties of SOFC cathodes are their catalytic activity for oxygen 

reduction and their compatibility with the electrolyte. The lanthanum manganite-based 

materials are the most common perovskites that are used with YSZ electrolytes at 1000°C 

because of their superior chemical stability. For lower cell operation temperatures composite 

cathodes made from LSM / YSZ are used [Haanappel-1], moreover Sr- / Co-doped lanthanum 

ferrites has been widely investigated [Singhal-1]. 

The last component of every SOFC stack is an interconnector plate. The main function of the 

interconnector is to act as a current collector and provide the electrical connection between 

the various single cells. The most important properties required for the interconnector material 

are therefore, high electronic conductivity, thermal stability in the anode and cathode side 

gases at high service temperature (650 – 1000°C), and the thermal expansion coefficient 

(CTE) similar to that of the ceramic, electro-active components. Ceramic materials on the 

basis of La-chromite have been shown to possess the property combination required for 
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interconnectors. In recent years, especially for planar SOFC design (compare: Cell 

configuration and stack design, section 3.1.4) where the interconnect additionally has to 

supply the mechanical support for the thin ceramic parts and it is the gas-proof separation 

between fuel gas and oxidant, metals have gained more and more attention as possible 

replacements for the La-chromite because they offer a number of advantages over ceramics 

materials. They are easier, and therefore cheaper to fabricate than ceramics, they are less 

brittle, easier to machine, end they can be joined with a number of standard welding and 

brazing techniques. Additionally, they possess higher electrical and thermal conductivities 

than most ceramics [Quadakkers-1]. Detailed discussion about suitable metallic materials for 

SOFC application is elaborated in paragraph 3.3 and electrical conductivity considerations are 

introduced in paragraph 3.5.

Cell configuration and stack design 

Figure 3.3: SOFC single cell configuration [Minh-1] 
A - anode, C - cathode, E - electrolyte, PS - porous substrate, I - interconnect 

The configurations in SOFC single cell can be classified into two categories: self-supporting 

(one of the cell components, often the thickest one, acts as the cell structural support) and 

external-supporting (cell is configured as thin layers on the interconnect or a porous substrate) 

[Minh-1]. The various cell configurations for SOFCs are schematically shown in Figure 3.3 

Each single SOFC cell (anode, electrolyte, cathode) is connected to the next single cell via the 

interconnect plate. The group of connected cells is the so called SOFC stack. At present, two 

main designs of the stack have been proposed and developed: tubular and planar design 

[Singhal-2] (Figure 3.4). In the tubular design, the cell is configured as a tube, and stacks 
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consisting of a bundle of single cell tubes. In the most common tubular design (i.e. Siemens 

Westinghouse design [Singhal-3, George-1]), the tube is made of the cathode material 

(cathode-supported) and closed at one end. Electrolyte and anode layers are formed on the 

outside of the tube. In the planar design (i.e. Research Centre Jülich [Tietz-1, Buchkremer-1]) 

the cell is configured as flat plates, which are connected in electrical series. All types of cell 

configurations (self-supporting or external-supporting) have been considered for the planar 

design [Minh-1]. 

Figure 3.4: Solid Oxide Fuel Cell - planar and tubular design [Singhal-1, 2] 

3.1.5 SOFC stack development at Research Centre Jülich  

At Research Centre Jülich (FZJ) several generations of SOFC stacks have been designed and 

tested since the mid-nineties (more than 180 stacks and short stacks), all based on the concept 

of anode-supported cells. Research Centre Jülich is currently testing the 6th and 7th generation 

of stack design for SOFC. These stack designs are based on the planar, anode supported type 

cells and metallic interconnect plates made of the ferritic steel developed in Jülich (Figure 

3.5). SOFC activities are concentrated on stacks suitable for practical stationary and mobile 

application. The aim is to design all components for high performance, low degradation, 

optimal industrialised processing, low weight, high flexibility and low cost. Integration of 

these results is expected to move stack lifetime well above 20 000 hours [Steinberger-1].   
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Figure 3.5: The 60-cell stack operated at FZJ from April 2004. 13.3 kWel power production 
with hydrogen fuel, 11.9 kWel with methane [Steinberger-1] 

3.2 Basics of oxidation 

3.2.1 Thermodynamics considerations 

One of the most important questions in corrosion science is whether or not a reaction between 

a material and surrounding gas can occur. This question can be answered by the second law of 

thermodynamics. In most cases during high temperature exposure temperature and pressure 

are constant, so the second law is most conveniently written in terms of the Gibbs free energy 

( 'G ) [Birks-1]. 

''' TSHG         (3.1) 

where 'H  is the enthalpy and 'S  the entropy of the system. Under these conditions the second 

thermodynamics law states: 

0'G  spontaneous reaction expected 
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0'G  equilibrium 

0'G  thermodynamically impossible process 

For a chemical reaction [Kofstad-1], e.g.: 

22 MOOM        (3.2) 

'G  is expressed as: 

2

2ln'
OM

MO

aa
a

RTGG       (3.3) 

where G  is the free energy change when all species are present in their standard states, R

is a gas constant, T  is a temperature and a  is the thermodynamic activity which describes the 

deviation from the standard state for a given species.

Activity for a given species may be expressed as: 

i

i
i p

p
a         (3.4) 

where ip  is either the vapour pressure over a condensed species or the partial pressure of a 

gaseous species and ip  is the same quantity corresponding to the standard state of i . It is 

then possible to modify equation 3.3 replacing 
2Oa  by the oxygen partial pressure 

2Op :

2

2ln'
OM

MO

pa
a

RTGG       (3.5) 

For the special case of equilibrium ( 0'G ), equation 3.5 reduces to: 

2

2ln
OM

MO

pa
a

RTG       (3.6) 
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If the activities of M  and 2MO  are taken as unity, equation 3.6 may be used to express the 

oxygen partial pressure at which the metal and oxide coexist, i.e. the dissociation pressure of 

the oxide. 

2
ln OpRTG        (3.7) 

or:

RTGpO /exp
2

      (3.8) 

The value of dissociation pressure can be derived from the Ellingham/Richardson diagram 

(Figure 3.6), i.e. a plot of standard free energies for the formation of oxides as a function of 

temperature. Stabilities of the oxides can be directly compared on the diagram – the lower the 

position of the line on the diagram (lower dissociation pressure) the more thermodynamically 

stable is the oxide. The dissociation pressure increases with increasing temperature and from 

the viewpoint of thermodynamics the tendency of metals to oxidise decreases with increasing 

temperature. 

Important information for designing industrial alloys can be obtained from the 

Ellingham/Richardson diagram. It is clearly visible that the oxides of iron, nickel and cobalt 

which are the basis for the majority of engineering alloys, are significantly less stable than the 

oxides of some of the solutes (e.g. Cr, Al, Si etc.) in these alloys. When one of these solute 

elements is added to iron, nickel or cobalt in a reasonable concentration, the base alloy is 

protected due to formation of a stable oxide on the surface. This is the basis of protection for 

most of the engineering alloys [Khanna-1]. 



3.   Literature review

13

Figure 3.6: Standard free energy of formation of selected oxides as a function of temperature 
(Ellingham/Richardson Diagram) [Khanna-1] 

3.2.2 Kinetics of oxidation 

During high temperature exposure under thermodynamically favourable conditions (compare 

section 3.2.1) corrosion products start to form at the interface between two reactants. When 

dense films or scales are formed, the reactants, i.e. the metal and the oxidant, are separated, 

and the reaction may proceed only through the solid state diffusion of the reactants through 

the scale. Diffusion and transport of electrical charges in solids take place because of the 

occurrence of imperfections or defects in solids [Kofstad-1]. It is necessary to take into 

consideration that oxides have an ionic nature with stoichiometric or nonstoichiometric 

compositions, however an exact stoichiometric composition in inorganic compounds is in 

principle an exception [Kofstad-2]. Nonstoichiometric ionic compounds are classified as 

semiconductors and may show negative or positive behaviour and thus different kinds of 

defects in the lattice. The classification refers to the fact that electrical charge is transferred by 

negative carriers (N-type semiconductors) or positive carriers (P-type semiconductors). Ionic 

and electronic transport processes through the oxide are accompanied by ionising phase 
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boundary reactions and the formation of new oxide at a site whose position depends upon 

whether cations or anions are transported through the oxide layer [Birks-1]. 

The basis for understanding high temperature oxidation of metals has been explained by Carl 

Wagner [Wagner-1]. In the classical Wagner’s theory, lattice diffusion of ions or electrons 

across the scale is the rate controlling process. It is assumed that thermodynamic equilibria are 

established between the oxide and the oxygen gas at the oxide/oxygen interface and between 

the metal and the oxide at the metal/oxide interface (Figure 3.7). A gradient in the partial 

pressure (activity) of oxygen exist across the scale from the partial pressure of oxygen in the 

ambient atmosphere at the outer oxide surface to the partial pressure of oxygen at the 

metal/oxide interface. The latter partial pressure is the dissociation pressure of the oxide in 

equilibrium with the metal [Kofstad-1]. 

M = M2+ + 2e-                                              M2+ + 2e- + 1/2O2 = MO 

                                                       or                                                                          or 

                                         M + O2- = MO + 2e-                                                1/2O2 + 2e- = O2-

Overall reaction: 2M + O2 = 2MO; G°MO

Figure 3.7: Diagram of scale formation according to Wagner’s model [Birks-1] 

Assuming that ionic transport across the growing oxide layer controls the rate of scaling and 

that thermodynamic equilibrium is established at each interface the outward cation flux,  

2Mj , is equal and opposite to the inward flux of cation defects. According to Fick’s first law 

of diffusion: 

RT
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p
a MO
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x
CC

DJJ MM

MM

VV
VVM

'''

2      (3.9) 

where x  is the oxide thickness, 
MVD  is the diffusion coefficient for cation vacancies, and 

''
MVC and '

MVC are the vacancy concentrations at the scale-gas and scale-metal interfaces 

respectively. 

Since there is thermodynamic equilibrium at each interface, the value ( '''
MM VV CC ) is constant: 

x
CC

D
dt
dxconstj MM

MM

VV
VV

''' _
.      (3.10) 

so,
x
k

dt
dx '        (3.11) 

Integrating and noting that 0x  at 0t

tkx '2 2         (3.12) 

The expression 3.12 is the common parabolic rate law [Birks-1]. 

It is shown in equation 3.12 that according to Wagner’s theory the growth of the oxide scale is 

parabolic with time. Nevertheless, it is necessary to point out that this theory assumed highly 

idealistic conditions. During oxidation of different metals of alloys it is, in many cases, 

possible to observe deviations from parabolic oxidation kinetics into linear, logarithmic or 

combinations of two different kinetic laws. This behaviour is strictly connected with the rate 

determining step of the reaction and can also depend upon a number of factors, i.e. 

temperature, oxygen pressure, surface preparation and pre-treatment of the metal. For 

example the growth rate of alumina scales on reactive element containing, high temperature 

alloys has often been found to show a large deviation from classical parabolic kinetics; 

generally scale growth rates near to sub-parabolic (near-cubic) time dependence are observed. 

This has been explained in most cases by assuming that oxygen grain-boundary diffusion is 

the dominating scale growth process (compare also paragraph 3.4.1). 



3.   Literature review

16

For engineering design, kinetics of oxidation are very important as they give an estimate of 

the design life of the metal to be used as a particular component at a specific temperature and 

environment [Khanna-1]. 

3.3 High temperature alloys for SOFC interconnect applications 

3.3.1 Requirements for SOFC interconnectors 

The most important requirements for SOFC interconnectors can be specified as follows 

[Quadakkers-1, Haile-1]:

High electronic conductivity 

Excellent impermeability 

Chemical stability under both oxidising and reducing conditions 

Good mechanical properties 

Thermo-mechanical compatibility with other cell components (CTE)  

Ceramics, perovskite type materials on the basis of La-chromite have been shown to possess 

the property combination required for interconnector materials, especially in the case of 

SOFC tubular design [Minh-2, Steele-1]. However, as introduced in paragraph 3.1.4, metallic, 

high temperature alloys can also withstand most of the requirements and therefore are being 

considered as construction materials for the SOFC interconnectors especially in the case of 

planar design [Stöver-1]. Metals additionally offer a number of advantages over La-chromite 

based ceramics especially when considering their lower cost and ease of fabrication 

[Quadakkers-1]. The last feature is of a great importance in designing fuel cells for mobile 

(e.g. automotive) applications. SOFC market requirements force the reduction of the fuel cell 

size and thus the interconnector thickness [Lamp-1, Zizelman-1, Friedrich-1]. Production of 

thin ceramic sheets is of course much more difficult (and in some cases even impossible) so 

metallic materials should have a large advantage for such an application over ceramic based 

interconnects.

Several groups of metallic materials were considered as possible interconnector materials for 

SOFC applications. At first, noble metals were investigated [Kofstad-3], but because of their 

high cost and limited availability this solution has been abandoned for commercial 

applications.  
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The main attention, therefore were paid to conventional high temperature alloys [England-1]. 

The most important ability of such an alloy is the formation of slow, thermally grown, 

protective oxide scales. For temperatures up to 1200°C the best choice would be MCrAl 

alloys (where M - Ni, Co or Fe) because of excellent oxidation protection of the alumina scale 

[Quadakkers-2]. In respect to a low CTE the best material to choose from this group of alloys 

would be FeCrAl [Lai-1]. Unfortunately, excellent oxidation protection of alumina formers is 

accompanied by very low, insufficient electrical conductivity of the surface scale (Al2O3)

[Kofstad-3]. This is also the case for alumina forming intermetallics on the basis of NiAl, 

which were also investigated as possible interconnector materials because of their superior 

oxidation resistance and low CTE [Yamamoto-1].  

Nickel-, cobalt- or iron based silica forming alloys could be potentially used as interconnects. 

However, formation and long term stability of protective silica requires quite large amounts of 

silicon additions to the mentioned alloys. This leads to substantial embrittlement, thus making 

the alloy unsuitable as construction material. Besides, silica has a very low electronic 

conductivity, leading to similar problems in SOFC application as alumina forming alloys 

[Quadakkers-1].

The most promising metallic materials for SOFC interconnectors are chromia forming alloys 

[Kofstad-3, Quadakkers-1]. In respect to their reasonable oxidation protection, satisfactory 

CTE and relatively high electronic conductivity chromia formers seem to be most suitable as 

interconnectors for SOFC application.

3.3.2 Chromia formers for SOFC applications 

The most of the commercial chromia forming alloys is based on the systems NiCr, NiFeCr or 

FeCr. Ni-base alloys were investigated as SOFC interconnectors [Matsuzaki-1, England-1,2], 

however in respect to their substantially high thermal expansion coefficient Ni-base alloys are 

probably less promising for SOFC interconnects. Application of such a material would 

require a special cell design to overcome the stresses generated between interconnect and 

other cell components during thermal cycling [Quadakkers-1]. 

Chromia forming alloys based on the system FeCr are the most promising materials for SOFC 

application. These kinds of materials could be divided into two main groups: chromium base 

alloys and iron base ferritic steels [Tietz-1].  
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Typical alloy/steel compositions contain several elements, which are necessary for optimal 

behaviour during high temperature service. The main groups of these components are: 

Base material (for the FeCr systems Fe or Cr) – the component that is in majority and 

determines the thermo-mechanical properties of the alloy.  

Oxide forming elements (for the FeCr systems mainly Cr) – the elements that 

according to thermodynamics and kinetics form slowly growing, protective oxide 

scales (Cr2O3) [Wood-1]. 

Reactive elements (RE) – elements like Zr, Hf, Y, La, Ce that reduce the growth rate 

of the oxide scale (Figure 3.8) and provide better adhesion at the scale/alloy interface 

[Quadakkers-3].

Minor alloying elements (i.e. Ti, Mn) – incorporated into the scale and/or as an 

internal oxidation zone, can improve different alloy properties [Quadakkers-1]. 

Figure 3.8: Weight change data of wrought Fe-24Cr alloys containing additions of Y, Ce, Zr, 
or La during oxidation at 800°C in air [Quadakkers-3] 

Addition of the reactive elements to the alloy/steel could be carried out through two different 

alloying methods. Elements could be added into the alloy/steel in the form of pure elements 

(conventional method) or as oxide dispersions in the material matrix [Quadakkers-3]. The 

latter alloying method leads to the formation of so-called oxide dispersion strengthened 

materials (ODS) [Greiner-1, Köck-1]. The main advantage of ODS materials is improved 

mechanical properties compared to conventionally melted alloys/steels. The main 
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disadvantage is the relatively high price of the material because of the complicated 

manufacturing process [Tietz-1].  

Cr-based alloys for SOFC application 

During high temperature exposure pure chromium forms a protective chromia scale. 

Unfortunately, during air/oxygen exposure the oxide scale formed on pure chromium is not 

ideally flat [Quadakkers-1]. It was shown by several authors that outward chromium diffusion 

is a dominant transport mechanism [Graham-1, Cotell-1] and therefore in many cases voids 

and cavities are formed leading to poor scale adherence and scale spallation. During low 

oxygen partial pressure exposure (Ar-H2-H2O) oxide scales exhibit far better adherence to the 

metallic substrate than those formed in air or oxygen [Hänsel-1]. This effect could be 

explained by a similar mechanism as proposed by Rahmel and Tobolski [Ramhel-1] for 

porous iron oxide scales. Incorporation of water vapour or hydrogen into the scale can cause a 

rapid re-oxidation of the exposed metal by a dissociation mechanism involving a “H2/H2O-

bridger” within the voids. In this way crack/pore healing occurs, thus preventing growth of 

the voids at the metal/scale interface [Quadakkers-1]. 

Poor oxide scale adherence formed on pure chromium can be improved by the addition of 

reactive elements especially in the form of oxides (ODS alloys, see section 3.3.2) making 

alloys more suitable for SOFC application. A good example of an alloy with such an addition 

is Cr5Fe1Y2O3 material developed and produced by Plansee [Greiner-1, Köck-1]. Addition of 

yttrium oxide into the chromium suppresses scale growth by outward chromium transport, 

improves scale adherence and reduces oxide scale growth (Figure 3.9). Additionally, oxide 

dispersion reactive elements substantially improve the mechanical properties of chromium 

(improvement in ductility). The addition of iron is necessary to adjust the thermal expansion 

coefficient to as close as possible to that of the ceramic electrolyte material in the case of 

SOFC application [Greiner-1, Köck-1].

Another Cr-ODS alloy has also been recently reported. The addition of MgO dispersions to 

chromium appears to increase ductility, however no further data on other mechanical 

properties of such an alloy have been reported [Brady-1]. 
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Figure 3.9: Weight change data of various Cr base alloys after exposure at 1000°C in Ar/O2
showing improvement of scale growth and adherence in case of Cr-ODS alloys 
[Quadakkers-3]. MIX - elemental mixing, MA - mechanical alloying 

One of the most important problems for the application of Cr base alloys for SOFC 

interconnects is vaporisation of chromium. In air/oxygen exposure chromia tends to form 

volatile oxides (CrO3) and/or hydroxides CrO2(OH)2 [Quadakkers-4, Ebbinghaus-1]. It was 

reported by several authors [Badwal-1, Batawi-1, Günther-1, Das-1, Hilpert-1] that in the case 

of SOFC applications volatile chromium species could cause serious cell degradation by 

poisoning the cathode. Several protection methods have been proposed to minimize 

evaporation of Cr-species, such as coating of the interconnector with La-chromite [Gindorf-

1], or-manganite [Batawi-2], metallic layers [Quadakkers-5], oxide layers [Quadakkers-5] or 

aluminium surface enrichment to promote alumina surface scale formation on interconnector 

areas, where electrical conductivity is not a major issue [Quadakkers-5, 6]. 

Commercial ferritic steels as SOFC interconnectors 

Commercially available ferritic steels contain between 7 and 28 wt. % of chromium. In the 

case of low chromium steels (< 5 wt. %) formation of chromium oxide and/or Fe/Cr-spinel is 

observed during exposures in air in the temperature range 700 – 1000°C. With increasing Cr 

content in the steel the oxide scale becomes richer in spinel and when the Cr content exceeds 

17-20 wt. %, formation of an exclusive Cr2O3 layer is observed (Figure 3.10). It is also 

necessary to take into account that the Fe-Cr system contains a closed field of a terminal fcc 

solid solution of Cr in Fe (figure 3.11), which is referred to in the literature as austenite. It 

means that at temperatures higher than 851°C austenite phase will form if the Cr 
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concentration is smaller than ~ 12 at. % resulting in changes in oxidation resistance as well as 

thermal expansion coefficients.  

The addition of minor alloying elements into the steel also has a great influence on the 

oxidation behaviour. Manganese, frequently used as a minor addition in the range of a few 

tenths of a percent, incorporates into the scale forming an exclusive Cr/Mn-spinel layer 

(figure 3.12). Ti, Si and/or Al also frequently appear as minor alloying additions and often 

precipitate as internal oxidation zones beneath the external chromia scale, however, Ti can 

also be dissolved into the chromia, especially at low oxygen partial pressures [Naoumidis-1]. 

Addition of Al and/or Si by more than 1 wt. % can cause external alumina/silica scale 

formation instead of internal precipitation. 

Figure 3.10:  Oxidation rate and scale formation of Fe-Cr alloys at 1000°C in 0.13 bar 
oxygen [Wright-1] 

3 43 4
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Figure 3.11: Fe-Cr phase diagram [Massalski-1] 

Figure 3.12: Phase equilibria in the quasi-ternary system Cr2O3-Mn3O4-TiO2 after annealing 
at 1000°C in air. White: three-phase regions, radiate-shaded: two-phase regions, dark: one-
phase regions [Naoumidis-1] 

A change of the test atmosphere from air to the simulated anode side gas (H2/H2O) has similar 

effects for high-Cr steels as described for Cr based alloys [Quadakkers-1]. The morphology of 
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the chromia- and spinel-rich surface layers is slightly modified [Horita-1] and the adherence 

of the scale is improved [Malkow-1]. 

The important problem associated with most commercially available ferritic steels in SOFC 

application is that slight changes in alloy composition, service temperature or design-related 

parameters can dramatically change the oxidation properties. Additionally, a change from one 

oxide scale type into another can occur during long-term service due to depletion of the scale 

forming elements Al, Si, Mn, Ti in the alloy matrix because of their low concentrations 

[Quadakkers-1]. Therefore, it was necessary to design steels with a special combination of 

properties for SOFC interconnect applications.

Ferritic steels designed for SOFC application   

In recent years, a number of ferritic steels especially for SOFC applications operated in the 

temperature range 600°C – 800°C have been designed. Quadakkers et al. studied the 

suitability for interconnector application of model steels with Cr contents of 16-25 % and 

evaluated the effect of various RE additions to achieve an optimum combination of low scale 

rate and excellent scale adherence as shown in figure 3.13 [Quadakkers-7, Piron-1-3]. As a 

result of these studies the semi-commercial JS-3 steel [Piron-3] and the commercial ferritic 

steel Crofer 22 APU [Hojda-1] were introduced to the market. Crofer 22 APU produced by 

ThyssenKrupp VDM [Hojda-1] contains ~23 wt. % Cr to obtain a large “Cr-reservoir” for 

protective chromia scale formation. As a reactive element La was chosen because this element 

appeared to be most beneficial, mainly because, contrary to other commonly used RE’s, it 

does not form intermetallic compounds with iron [Quadakkers-1]. Small amounts of Mn and 

Ti were added to obtain external spinel formation, which is expected to decrease the 

formation of volatile Cr-species [Piron-1, 3, Gindorf-2] (compare section 3.3.2, Cr-base alloys 

for SOFC application). Minor Ti additions were added to obtain fine internal oxide 

precipitates of titania which lead to strengthening of the near-surface region, thus reducing the 

tendency for occurrence of surface wrinkling caused by relaxation of oxidation-related 

stresses during thermal cycling [Quadakkers-1]. 
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Figure 3.13: Oxidation of model high-Cr steels at 800°C in air [Piron-2] 

Ferritic steels for SOFC interconnectors were also designed by Hitachi Metals [Uehara-1, 

Horita-2, 3]. Steel ZMG232 produced by Hitachi Metals contain high amounts of Cr (~23 

wt.%) with Zr as a reactive element and also forms a double protective oxide scale with Cr, 

Mn-spinel on the top (addition of Mn into the steel).  

Further reading for the development of steels, which are especially designed for SOFC 

application, are described in references [Ghosh-1, Kung-1, Krumpelt-1], however no detailed 

information of the steel compositions were given. 

Recently high-Cr ferritic steels produced by powder metallurgical techniques (ODS alloys) 

have been reported. Honnegger et al. [Honnegger-1] developed a ferritic material for SOFC 

application with approximately 20 % Cr. Another example of such material are IT-alloys 

recently designed by Plansee Aktiengesellschaft [Glatz-1] with systematic variations of minor 

alloying additions. The latter materials seem to possess better properties in comparison to 

commercially available, ingot-metallurgical ferritic steels but on the other hand, the relatively 

high price of these ODS-steels could be a big disadvantage over a traditional method of 

melting.   
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Protective coatings for metallic SOFC interconnectors 

In evaluating the growth rates and electronic properties of the surface scale of metallic 

interconnectors, it has to be borne in mind that parts of the interconnectors are in direct 

contact with the electrodes or with the contact materials.  

Most studies concerning compatibility of metallic interconnectors with electrodes or contact 

materials relate to the cathode side of the cell. Here, in most designs the interconnector is in 

direct contact with La-based perovskites. Due to the interaction between the interconnector 

and the perovskite two important processes can occur: change of the oxide composition on the 

interconnector surface and change in the alloy composition in the surface near region, mainly 

due to Cr transport into the perovskite [Quadakkers-1]. 

To prevent interactions between the interconnector and cathode, several authors proposed 

contact layers containing large amounts of spinel-forming elements such Co or Ni. The dense, 

Cr-free spinel layer, formed by interdiffusion of manganese, which outwardly diffuses 

through the chromia scale on the ferritic steels, acts as a barrier against vapour phase transport 

of volatile chromium oxides and hydroxides [Larrying-1, Piron-3, Zahid-1].

It was also reported that Sr, frequently, present as a dopant in La-manganites, - chromites and 

- cobaltites, is easily transported from the cathode or contact layer in the direction of the Cr-

rich or Cr-based interconnector surface. This effect leads to the formation of compounds of 

the type SrCrO4 and/or Sr3Cr2O8 in the chromia layer and was claimed to be beneficial for the 

electrical conductivity of the scale [Quadakkers-1]. 

On the anode side of the cell, the interconnector is in direct contact with a Ni-ZrO2-cement or 

Ni-based contacting material. In the case of a ferritic steel, interdiffusion between 

interconnector and the spot-welded nickel wire mesh will lead to Ni transport into the steel, 

resulting in local austenite formation and thus the related changes in oxidation resistance as 

well as thermal expansion coefficient. Vice versa, transport of Fe, Cr and other steel 

constituents into the wire mesh converts the latter into an alloy, which will form surface oxide 

layers in the anode-side environment [Quadakkers-1].
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3.4 Oxidation kinetics and lifetime prediction of the ferritic steels

As introduced in section 3.2.2, kinetics of oxidation are one of the key features for the 

material during high temperature service. Kinetics of the protective oxide scale formation 

limit the time in which a material can be used for its particular application – the lifetime of the 

material. When, for the various reasons, the protective oxide scale can no longer be formed, a 

non-protective, fast growing oxide starts to form and this process destroys the high 

temperature resistance of the material.  The above-described phenomenon is known in 

corrosion science as “breakaway”. Calculations of the material lifetime – prediction of the 

beginning of breakaway oxidation have been widely studied in recent years especially for the 

case of alumina forming ferritic steels [Quadakkers-8, 9, Gurrappa-1, Nichols-1].

3.4.1 Lifetime prediction of the alumina forming ferritic steels 

Ferritic steels of the type Fe-20Cr-5Al (in wt.%) are among the most oxidation resistant 

metallic materials because the alumina surface scales which form during high temperature 

exposure show small growth rates and have excellent thermodynamic stability [Quadakkers-

9]. The growth rates of alumina scales on RE-containing, high temperature alloys have often 

been found to show a large deviation from classical parabolic kinetics [Quadakkers-2] 

(compare section 3.2.2). This has been explained in most cases by assuming that oxygen grain 

boundary diffusion is the dominating scale-growth process, in combination with an oxide 

grain size increasing in the growth direction and perhaps also with time [Liu-1, Hindam-1].  

For alumina forming ferritic steels, it was shown that the oxidation limited lifetime of thin 

components is primarily governed by the Al reservoir in the component [Quadakkers-8, 9]. If 

growth and re-healing of the oxide scale leads to a decrease in the Al-concentration below a 

critical level, breakaway oxidation occurs (figure 3.14). Due to the very high oxide growth 

rates accompanied by this effect, the time at which breakaway occurs, represents the lifetime 

limit of the component [Gurrappa-1, Nichols-1].  
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Figure 3.14: Metallographic cross-section showing typical breakaway oxidation on FeCrAl-
alloys [Naumenko-1] 

Recently, a model was developed which allows the prediction of the time to breakaway 

oxidation for alumina forming FeCrAl-based alloys as a function of temperature, component 

thickness and alloy Al content [Quadakkers-8, 9]. In reference [Quadakkers-9], the 

assumptions and limitations of the model were extensively discussed. Two important 

simplifying assumptions establish that [Gurrappa-1]: 

Aluminium depletion in the alloy due to scale formation does not result in a clear 

gradient beneath the scale, but the Al concentration profile in the bulk alloy can be 

considered to remain ideally flat. 

If scale spallation occures, it leads to spalling over the whole specimen/component 

surface and reoxidation proceeds as on a fresh surface. 

It is now possible to calculate the time to breakaway (tB) for a flat specimen of thickness d

and infinite length and width knowing the initial alloy Al content ( 0C ), the remaining Al 

content at time t ( tC ), the alloy density ( ), the oxidation rate constant (k ), the oxidation 

rate exponent ( n ) and assuming that the surface oxide consists completely of Al2O3 (i.e. the 

Al/O weight ratio is equal to 1.124) [Gurappa-1]:      

n

BB k
dCCt

1

0
3 )(104.4      (3.13) 

1 mm

Breakaway
(Fe,Cr)2O3

Al-depleted Matrix

1 mm

Breakaway
(Fe,Cr)2O3

Al-depleted Matrix
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In the case of a rectangular specimen of length L , width b  and thickness d  (all values in 

cm ) equation (3.13) changes to: 

n

BB bdLdk
dCCt

1

0
3

)//1(
)(104.4    (3.14) 

in which the specimen thickness d  is replaced by the factor:

)//1( bdLd
d        (3.15) 

for considering the total surface area and volume of the specimen. It is of course also possible 

to make a similar calculation for different specimen shapes taking the correct volume to 

surface ratios of various types of specimen geometries such a bars or wires into account 

[Gurrappa-1, Nichols-1].

As explained in references [Quadakkers 8, 9, Gurrappa-1], the alumina scales on the FeCrAl-

based alloys become prone to spallation after long term exposure. Assuming that this 

spallation starts after the oxide thickness reaches a critical thickness *x , corresponding to a 

critical weight change *m , the following expression was derived in reference [Quadakkers-

9] for the time to breakaway for a flat specimen of infinite size (compare equation 3.13): 

11
*

1

0
3 )()()(104.4 nn

BB mkdCCt    (3.16)

Figure 3.15 shows a typical calculation of the lifetime for FeCrAl-alloy base on the equations 

presented above. The lifetime prediction seems to be in reasonable agreement with the 

experimental data, showing that, for a given alloy, the Al reservoir decreases with decreasing 

component thickness, the lifetime will decrease with decreasing component thickness. The 

above presented calculation is very important from the practical point of view because it gives 

possible guidelines for lifetime extension of alumina forming FeCrAl-alloys. 
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Figure 3.15: Calculated lifetime for FeCrAl-ODS alloy compared with experimental results 
[Quadakkers-10]

3.4.2 Lifetime limits of chromia forming ferritic steels 

Classical Wagner oxidation theory [Kofstad-1] (compare section 3.2.2) predicts that scale 

growth will obey a parabolic time dependence if oxidation is controlled by diffusion of metal 

and/or oxygen ions through the oxide lattice: 

tkx 2         (3.17) 

in which x  is the scale thickness, t  the time and k  the parabolic oxidation rate constant.  

Expressed as oxygen uptake per unit area ( m ), equation 3.17 is mostly written in the 

following form: 

tKm p
2)(         (3.18) 

For Cr, Cr-alloys and especially Cr-based ODS-alloys, equation 3.18 is rarely obeyed 

[Hänsel-1, Rahmel-1, Gil-1] because the assumptions made to describe scale growth by 

equation 3.18 are mostly not fulfilled [Bongartz-1]. Chromia scale growth proceeds in this 

case via rapid diffusion paths, such as oxide grain boundaries [Cotell-1, Sabioni-1]. 

Literature kinetics data in the case of Fe-based chromia forming ferritic steels are 

contradictory and depend on the exposure atmosphere, temperature, oxidation time and initial 

10

100

1000

10000

100000

0.01 0.10 1.00 10.00

Specimen thickness / mm

Ti
m

e 
to

 b
re

ak
aw

ay
 / 

ho
ur

s

Experimental

Prediction

with spalling

without spalling

PM 2000; Discontinuous 
Air Oxidation at 1200°C



3.   Literature review

30

chromium content. Extended studied carried out by Wood et al. [Wood-1-4] shows that most 

of the common growth relations were observed dependent upon of specific alloy type and 

conditions that were used. However, in order to attempt some form of generalisation, the 

schematic weight change/time diagram may be used [Wood-1] (Figure 3.16). Under mild 

conditions, a thin protective film is built up at a declining rate according to the curve OAD. 

When the atmosphere is somewhat more severe, however, after an initial protective period 

OA (sometimes referred to as an induction period), there is a sudden increase in rate AB 

(breakaway). This stage is often followed by a further reduction in rate BC (self-healing) but 

in some cases where the oxide stays non-protective BE may followed instead [Wood-1]. 

Figure 3.16: Typical growth curves for the oxidation of iron-chromium alloys and stainless 
steels [Wood-1] 

Whittle [Whittle-1] claimed that during the period of oxidation immediately following the 

nucleation stages, at temperatures in the range of 800°C – 1200°C (oxidation atmosphere: 

flowing oxygen at 1 atm pressure), virtually pure chromium oxide is formed on Fe-Cr alloys 

containing greater than about 13 % Cr. Chromia scales formed in this case grew 

approximately according to a parabolic rate law. In the case of alloys with Cr contents 

between 13 – 25 wt.% at the higher temperatures (i.e. 1200°C), oxidation rates showed (after 

an induction period during which Cr2O3 is formed) a rapid increase, and a thick stratified 

scale containing mainly iron oxide replaced the protective scale (breakaway oxidation, 

compare section 3.4) [Whittle-2].  

Two main theories have been proposed to account for breakaway [Whittle-2]. Firstly, a 

“chemical” mechanism is considered possible [Bandel-1, Edström-1, Menzies-1] where the 

initial chromium oxide layer is attacked from within by the chromium-depleted alloy and 

transformed into iron-containing oxides, which then grow rapidly – the chromium 
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concentration at the alloy/oxide interface must be reduced below that necessary for 

thermodynamic stability of this oxide in contact with the alloy [Whitlle-2].  

The second mechanism involves mechanical separation and cracking of the chromium rich 

oxide from the surface of the alloy [Wood-3, 4], thus exposing fresh, chromium depleted alloy 

to the hot oxidizing gases. The disruption of the protective scale may be due to one or more 

factors: ferrite to austenite phase changes in the underlying alloy [Smeltzer-1], grain growth 

of the alloy [Decroix-1], recrystallization of the oxide [Caplan-1, 2, Yearian-1, 2], void 

formation at the alloy/oxide interface [Caplan-1, 2] and stress development during scale 

growth [Wood-3, 4, McCullough-1]. If mechanical rupture of the protective oxide scale 

occurs, then the exposed chromium depleted alloy can either [Whittle-2]: 

Re-form a Cr2O3 scale if the surface chromium concentration of the exposed 

underlying alloy is greater than that for the formation of Cr2O3 at the ambient oxygen 

pressure.

Form less protective oxides, such as spinel, allowing rapid scaling to ensure.   

From the overview presented above it is clearly visible that the lifetime of the chromia 

forming alloys depends on the chromium reservoir [Otsuka-1], similar to aluminium in the 

case of FeCrAl-alloys (compare section 3.4.1). However, practically no literature data has 

been found regarding the lifetime prediction of chromia forming ferritic steels. 

3.5 Electrical conductivity of chromia 

For SOFC application not only the electrical conductivity of the interconnector material itself 

is of great importance, but also that of the chromia-based scales which form on the surface 

parts of the interconnector which are in direct contact with the electrode materials or, 

depending on the stack design, with the contacting materials [Quadakkers-1]. 

3.5.1 Electrical conductivity - introduction 

When an electric field E , is applied across a crystal, a force is exerted on the charged 

particles. If an ion or a defect has a charge iq , the force, iF , is given by [Kofstad-2]: 

EqF ii         (3.19) 
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This force causes directional transport of the charged particles in addition to their random 

thermal motion. The resulting current density is given by: 

EI ii         (3.20) 

where i  is the conductivity of particles of type i . Equation 3.20 is an expression of Ohm’s 

law. 

If a crystal contains different types of charge carriers, the total current density I , is given by: 

EIi         (3.21) 

where  represents the total electrical conductivity. 

The electrical conductivity is given by the sum of the conductivity due to electrons and holes. 

In the case of nonstoichiometric oxides two main behaviours of the electrical conductivity 

could be described: intrinsic and extrinsic.

In the intrinsic region of nonstoichiometric oxides, either electrons or holes will predominate, 

and the oxygen pressure dependence of the electronic conductivity will be determined by that 

of the concentration of the predominating electronic charge carrier. In this case n=p and the 

electrical conductivity is independent of the oxygen pressure.

In the extrinsic region it will often be necessary to consider the conductivity of both electrons 

and holes, and the electronic conductivity may change from n- to p-type conductivity with a 

change in oxygen pressure [Kofstad-2]. 

The temperature dependence of the electrical conductivity is shown in equation 3.22:

RT
E

fT aexp            (3.22) 

where f  is pre-exponential constant, aE is activation energy, R is universal gas constant, and 

T is temperature [Kofstad-2]. Thus, in evaluating the activation energy associated with the 
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diffusion coefficient from conductivity measurements, it is necessary to plot Tln  vs. 

T/1 [Kofsted-2] (compare figures 3.17, 3.18 and 7.3).  

Practically, electrical conductivity can be calculated using the following equation: 

A
LR           (3.23) 

where R  is an electrical resistance (in ), L is the length of the specimen (in cm ) and A  is 

the surface area of the specimen (in 2cm ).  (in cm ) is an electrical specific resistance of 

the material and it is inversely proportional to the electrical conductivity. 

1          (3.24) 

In the case of thermally grown oxide scales the data for electrical properties presented in the 

literature are often shown as area specific resistance or contact resistance ( ASR , in 2cm )

illustrated by equation (3.25): 

LARASR         (3.25) 

which can be easy transferred to electrical  conductivity  if the thickness of the oxide scale 

( L ) is known: 

ASR
L           (3.26) 

3.5.2 Electrical conductivity of bulk chromium oxide 

The electrical conductivity of chromium oxide may be divided into two main temperature 

regimes:  

High temperature region (>1000°C) [Park-1, Holt-1, 2] in which intrinsic behaviour is 

observed and the electrical conductivity is claimed to be independent of the oxygen 

partial pressure.  
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Lower temperatures (<1000°C) [Holt-1-4] in which the concentration of electronic 

defects due to intrinsic electronic equilibrium becomes so small that chromia changes 

into an extrinsic electronic conductor, the electronic conductivity being dominated by 

the presence of impurities or dopants.  

Figure 3.17 presents a literature overview of the electrical conductivity of bulk chromia (the 

most common way of plotting as log ( T) vs. 1/T has been chosen), showing large 

discrepancies in the conductivity data for lower temperatures (< 1000°C).

Figure 3.17: Literature data for the electrical conductivity of chromia [Holt-1, 2, Su-1, 
Crawford-1, Hagel-1, Nagai-1]

Several authors investigated the doping effect of chromia as shown in the figure 3.18. Below 

1000°C, Mg doped chromia was found to be a p-type conductor, whereby the electronic 

conductivity only marginally depends on oxygen partial pressure [Holt-2]. In H2/H2O

mixtures the conductivity is affected by dissolved protons [Holt-2, 3]. In the temperature 

range 400-1000°C Ti doped chromia is an n-type conductor at low oxygen partial pressure 

and a p-type conductor at near atmospheric oxygen partial pressure. No effect of hydrogen on 

conductivity was detected in TiO2 doped chromia [Holt-4]. Nagai et al. [Nagai-1-3] found 

doping by Y2O3 and La2O3 to increase the electronic conductivity of chromia (Figure 3.18). It 
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decreases with increasing oxygen partial pressure, although this effect is not very pronounced, 

especially at high temperatures. The strongest increase of the conductivity was observed for 

doping by NiO (Figure 3.18), whereby in this case no oxygen partial pressure dependence was 

found. Also doping by CeO2 or Fe2O3 increased the conductivity, however the effect was 

much smaller than that observed for NiO-doping [Quadakkers-1]. 

Figure 3.18: Literature data for the electrical conductivity of chromia [Holt-1-4, Nagai-1-3] 

3.5.3 Electrical conductivity of thermally grown chromia  

Several authors investigated the electrical conductivity of thermally grown chromia scales on 

metallic materials, with and without surface oxide coatings [Chen-1, Tietz-2, Piron-1, 2, 

Huang-1, 2, Larring-1, 2, Zhu-1, 2, Yang-1, 2, Horita-2, 3]. Piron et al. [Piron-2] investigated 

the contact resistance at 800°C of several FeCrMn(Ti/La) model alloys and compared the 

results with commercially available high Cr-steels as show in figure 3.19. The contact 

resistances of model high Cr-steels with Mn, Ti and La additions are lower than commercially 

available ferritic steels. This is probably caused by the doping effect of the chromia which is 

of significant importance when considering the electronic conductivities of the oxide scales 

formed on commercial metallic materials because their surface oxides do not frequently 

consist of pure chromia but they may be doped with major and/or minor alloying elements as 

well as impurities. Besides, the surface scales on the mentioned materials are in many cases 

not single-phase but may contain additional oxides, e.g. of the spinel type, adjacent to the 

chromia [Quadakkers-1].  In the case of the commercial 18%Cr alloy (1.4742) the alumina 

layer that formed explains the very high ASR of the oxide scale.



3.   Literature review

36

Figure 3.19: Contact resistance of various steels during isothermal exposure at 800°C in air 
[Piron-2]

Huang et al. [Huang-1, 2] studied the effect of various reactive-element coatings on the 

oxidation behaviour of commercial chromia forming, iron based alloys and found that in some 

cases the use of a coating can reduce the contact resistance of the oxide scale. Larring et al. 

[Larring-1] investigated the effect of water vapour and presence of a Ce-coating on the 

electronic conductivity of the oxide scale formed on Cr-ODS alloys. They found that the 

measured conductivity after oxidation increased with increasing water vapour partial pressure 

and decreasing temperature used in the oxidation. It was also shown that the use of an 

LSM+LSC coating can be beneficial for obtaining high electrical conductivity values 

[Larring-2].
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3.6 Summary of the literature review 

Fuel cells are one of the most promising candidates to partially replace conventional power 

generation systems because they are very attractive from both energy and environmental 

standpoints.

High temperature alloys seem to be good candidates for SOFC interconnectors because of 

their low cost and ease of fabrication compared to ceramic materials. 

Specially designed, Fe-based chromia forming ferritic steels can fulfil most of the SOFC 

interconnector requirements, however, further work is necessary to fully understand and 

subsequently optimise the behaviour of the mentioned materials under SOFC operating 

conditions.

In many cases SOFC market requirements (i.e. automotive industry) force the reduction of the 

fuel cell size and thus the interconnector thickness. Therefore, it is necessary to investigate the 

behaviour of thin interconnector components during high temperature service. 

A model, which allows the prediction of the time to breakaway oxidation as a function of 

component thickness for alumina forming FeCrAl-based alloys has been widely studied in 

recent years. It is advisable to elaborate a similar model for the Cr-forming ferritic steels. 

The literature data for electrical conductivity of chromia are ambiguous especially in the case 

of lower temperatures (< 1000°C), therefore further studies would be necessary to understand 

the electronic properties of the chromium oxide actually formed on ferritic steels. 
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4. Experimental 

4.1 Materials 

For the oxidation experiments several high chromium ferritic steels were used as listed in 

table 4.1. The first main group of these materials was commercial and semi-commercial steels 

with Cr contents between 16 – 25 wt.%. The second main group of the materials was model 

high Cr steels. Additionally pure (99.96 wt.%) chromium and a Cr-ODS alloy (Cr, 5Fe, 

1Y2O3) [Greiner-1, Köck-1] were incorporated into the test program. The detailed chemical 

compositions analyzed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-

AES) for each of the studied steels is listed in Table 10.1 and 10.2 in the Appendix.  

4.2 Specimen preparation 

For most of the oxidation experiments, samples of 20x10 mm or 10x10 mm were cut from the 

delivered plates and ground to 1200 grit surface finish using SiC grinding paper. In the case 

of very “surface-sensitive” analytical techniques (SNMS, compare section 4.3.4) specimens 

were polished to 1 m surface finish using a diamond polishing paste. Depending on the 

requirements of the experimental set-up, in some of the specimens a 2 mm hole close to the 

specimen edge was drilled. In order to determine a thickness dependence behaviour of the 

investigated materials (compare section 6) a couple of specimens with a different initial 

thickness were used. For some of the materials, plates with a different initial thickness already 

existed (i.e. Crofer 22 APU) however in some cases it was necessary to grind thick 

components to the required levels. For most of the “thickness dependence” experiments thick 

(2-1 mm) medium (~0.5 mm) and thin (0.3-0.1 mm) specimens were prepared. In the case of 

experiments where component thickness was not a priority feature (compare section 5) 

samples with ~ 2 mm thickness were used. Before oxidation all specimens were degreased 

using ethanol in an ultrasonic cleaner. 
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Composition (wt. %) Steel Melting 
variation

Batch
name Fe Cr Mn Ti La Si Al Others 

JS-3 - JEX Bal. 23.3 0.4 0.047 0.089 0.009 0.005  

JS-3 - JEW Bal. 22.9 0.4 0.046 0.087 0.01 0.01

Crofer 22 APU Crofer A1) JDA Bal. 22.5 0.42 0.05 0.075 0.1 0.12  

Crofer 22 APU Crofer A1) JMB Bal. 23.1 0.4 0.08 0.074 0.073 0.12  

Crofer 22 APU Crofer A1) JMC Bal. 22.6 0.4 0.072 0.07 0.056 0.12  

Crofer 22 APU Crofer A1) JMD Bal. 23.0 0.4 0.076 0.077 0.067 0.12  

Crofer 22 APU Crofer B1) JZF Bal. 22.2 0.46 0.055 0.07 0.026 0.022  

Crofer 22 APU Crofer B1) JZN Bal. 22.2 0.47 0.066 0.072 0.028 0.021  

Crofer 22 APU Crofer B1) KCB Bal. 22.2 0.45 0.065 0.096 0.014 0.011  

ZMG232 - HXT Bal. 22.1 0.48 - <0.01 0.36 0.19 Zr: 0.13

Alloy 446 - HNK Bal. 24.9 0.5 <0.005 <0.01 <0.01 -  

1.4509 - HLH Bal. 18 0.38 0.12 - 0.7 0.03  

1.4016 - HMM Bal. 16.3 0.19 <0.01 - 0.25 <0.02  

1.4016-C3 - HMP Bal. 16.2 0.29 <0.01 - 0.41 <0.02  

Model steel 
FeCrLa - HCE Bal. 25.2 - 1) 0.42 - 1)  

Model steel 
FeCrMnY - HCH Bal. 25.4 1.55 - - - -  

Pure Cr - CSX - Bal. - - - - -  

Fe5Cr1Y2O3
(ODS) - DCU 4.9 Bal. - - - - -  

Fe5Cr1Y2O3
(ODS) - DCV 4.8 Bal. - - - - -  

Model steel
(JS-3 base) - JLV Bal. 23.3 0.38 0.049 0.06 0.12 0.01

Model steel
(JS-3 base) - JLT Bal. 23.4 0.36 0.048 0.11 0.01 0.14

1) Compare paragraph 5.3.5 

Table 4.1: List of steels used for oxidation experiments 
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4.3 Experimental procedures for oxidation testing 

The experimental work was concentrated on the conditions which simulated the cathode side 

of the fuel cell, therefore, most of the experiments were performed in laboratory air. 

Cyclic oxidation studies were chosen to simulate the behaviour of the steels for mobile 

(automotive) application. Non-continuous operation in such a case is a standard operation 

condition.

The standard temperature for SOFC operation is known to be about 800°C [Piron-2, Singhal-

4], however higher temperatures are also applied [Minh-1]. Therefore 800°C as well as 900°C 

was chosen for long-term cyclic oxidation studies to simulate the standard and border 

conditions for SOFC operation. Moreover, during exposures at higher temperature (i.e. 

900°C) it is possible to investigate the catastrophic oxidation behaviour after relatively short 

times, which can be used for the prediction of the oxidation behaviour at lower temperatures 

(i.e. 800°C). 

At first, several “SOFC applicable” high-Cr ferritic steels were chosen as listed in Table 4.1  

(classical and specially designed for SOFC interconnections). The steels were investigated 

during cyclic long-term oxidation experiments and the most promising materials were chosen 

for further investigations – short term and long term exposures to determine the oxide growth 

mechanism (compare sections 4.3.1 – 4.3.5 and 5). 

The second group of oxidation experiments lead to determine the lifetime of selected 

materials with a different initial thickness. For these experiments cyclic long term exposures 

were also chosen, as most typical for standard stack operation (compare sections 4.3.1, 4.3.5 

and 6). 

The last part of the experiments was concentrated on the evaluation of the electrical 

conductivity of the thermally grown chromia oxide scales and other chromium containing 

oxides (compare sections 4.3.6 and 7). 
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4.3.1 Cyclic long-term oxidation studies 

Cyclic oxidation tests (each cycle consisted of 2 h heating and 15 min cooling) were carried 

out at 800°C and 900°C in laboratory air. For the oxidation experiments vertical furnaces with 

mobile specimen holders were used as shown in figure 4.1. During each cooling step air was 

blown on to the specimens (see figure 4.1 c) to minimize the cooling time. Mass change 

measurements were conducted every 36 hours and the specimens were visually inspected for 

the occurrence of breakaway oxidation.  

b)

a) c)

Figure 4.1: Experimental set up for the cyclic long-term exposures  
a) vertical furnaces for cyclic exposures 
b) specimens arrangement - start of the cooling step 
c) cooling of the specimens 

Cooling air pipe
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4.3.2 Thermogravimetry (TG) 

In order to perform short-term isothermal oxidation studies with full monitoring of the weight 

change behavior of the specimen, thermogravimetry (TG) techniques were used. For these 

experiments a SETARAM  microbalance was used. The heating/cooling rates were 

90°C/min, the flow rate of the gas was 2 l/h. All experiments were performed during 72 or 

100 h oxidation tests in synthetic air and wet air (synthetic air + 7 wt % H2O).  

4.3.3 Discontinuous long-term oxidation studies 

Discontinues long-term oxidation tests were carried out at 800°C in laboratory air for 

1000/6000 hours. Mass change measurements were carried out every 250 hours (cooling to 

room temperature) and the specimens were visually inspected for the occurrence of 

breakaway oxidation.  

4.3.4 Isothermal oxidation studies for SNMS investigations 

Short term, isothermal experiments (ranging from 1 min to 100 h) were carried out at 800°C 

in laboratory air whereby the main emphasis was oxide scale formation mechanisms during 

the early stages of oxidation. For these studies, samples of 10x10x2 mm were cut and 

subsequently polished to a 1 m surface finish. After single-stage and two-stage oxidation 

exposures (the latter using 18O-tracer) the specimens were investigated by Secondary Neutral 

Mass Spectrometry (SNMS, compare sections 5.3.2 and 7.2). 

4.3.5 Short-term isothermal / cyclic oxidation studies 

In order to compare short-term isothermal / cyclic oxidation behaviour selected steels were 

oxidized during isothermal and parallel cyclic 100 h oxidation tests in laboratory air. Thick (2 

mm) as well as thin (0.3 mm) specimens were used to determine the importance of cycles and 

thickness on oxidation behaviour. For cyclic oxidation testing each cycle consisted of 2 h 

heating and 15 min cooling (compare sections 4.3.1 and 6.1.3). 
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4.3.6 Contact resistance experiments 

The contact resistances of the oxide scales were measured using a conventional four point 

method. For these studies, specimens of 10x10x2 mm were ground to 1200 grit surface finish 

and then pre-oxidised for 100 h at 800°C in air. Subsequently, a layer of Pt or Au-paste was 

applied to both oxidized surfaces. For the electrical connection a Pt-mesh was used. An 

alumina cover and a 35 g weight were applied to the top of each specimen to force better 

connection to the platinum mesh. The contact resistance was monitored in-situ at a constant 

current (100 mA /cm2) during 300/1000 h exposure at 800°C in air and subsequently during 

step-wise cooling to 750°C, 700°C, 650°C and 600°C whereby each temperature stage was 

run for 10 h. Experimental set-up and typical conductivity/temperature curves are shown in 

figures 4.2 and 4.3, respectively.

a) b)

Figure 4.2: Experimental set up for the conductivity tests 

Alumina holder 
for six specimens 
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Figure 4.3: Typical course of contact resistance/temperature curves during conductivity 
experiments 

4.4 Microstructural analysis 

The oxide scales formed during the different types of oxidation testing were studied using a 

variety of techniques commonly used in material science. These included light optical 

microscopy, scanning electron microscopy (SEM) with energy dispersive X-ray analysis 

(EDX), X-ray diffraction (XRD), secondary neutral mass spectrometry (SNMS), transmission 

electron microscopy (TEM) and Raman spectroscopy (RS Dilor HR 800 equipped with a He-

Ne laser, =632.8 nm). The application of the above methods for the study of thermally grown 

oxide scales has been described elsewhere [Khanna-1]. Procedures used for quantification of 

the SNMS profiles of oxide scales are given in reference [Pfeifer-1]. Before mounting for 

metallographic cross section analyses, the specimens were sputtered with a thin gold layer and 

subsequently electroplated with nickel. This coating provided protection of the surface oxide 

layer during grinding and polishing and it ensured better optical contrast between oxide and 

mounting material. 
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4.5 Noble metal coatings 

In order to determine the platinum effect on oxidation behaviour selected materials were 

oxidized during two-stage exposure where after the first step, one side of the sample was 

sputtered with platinum. Specimens with platinum layers were oxidized during the second 

step using 18O-tracer gas. In the final stage specimens were investigated by Secondary Neutral 

Mass Spectrometry (SNMS, compare section 7.2). Platinum coatings were manufactured 

using Radio Frequency (RF) Magnetron Sputtering in a commercial device (Classic 500 by 

Pfeifer Vacuum). The MS – sputtering facility was a coaxial magnetron with a 51 mm 

diameter target. The target was made of Pt supplied by MaTeck GmbH. 
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Results and discussion 

5. Growth mechanisms of oxide scales on ferritic steels for SOFC 

application

5.1 Cyclic long-term oxidation behaviour of thick components 

Based on previous investigations [Piron-2], a number of high chromium ferritic steels as 

SOFC interconnector candidates were selected for long-term (cyclic) oxidation studies. The 

initial Cr concentration in these materials varied between 16 and 23 wt. % (Table 4.1).  In the 

following studies thick specimens were investigated (initial thickness between 1-2 mm). For 

the oxidation experiments the temperatures of 800 and 900°C were chosen (see section 4.3).  

5.1.1 Cyclic oxidation behaviour at 800°C 

Figure 5.1 shows the oxidation behaviour of the selected ferritic steels during cyclic oxidation 

at 800°C in air. All investigated materials show relatively small weight changes, however the 

best oxidation protection seems to have been steel JS-3. Metallographic cross-sections of the 

investigated materials are presented in figure 5.2. Steels JS-3, Crofer 22 APU (A and B, 

compare section 5.3.5), ZMG232 and 1.4509 show excellent adhesion of the oxide scale to 

the metallic substrate and a well-developed internal oxidation zone. In the case of Alloy 446 

and the two steels 1.4016 and 1.4016-3C, gaps between oxide scale and metallic substrate 

were observed, however no indication of oxide scale spallation was found.
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Figure 5.1: Weight change of different ferritic steels (thick specimens, initial thickness 
between 1-2 mm) during cyclic oxidation at 800°C in air 
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a) JS-3 (JEX 10) b) Crofer A (JDA 13)

c) Crofer B (JZF 14) d) ZMG232 (HXT 14)

e) Alloy 446 (HNK 12) f) 1.4509 (HLH 23)

g) 1.4016 (HMM 13) h) 1.4016-C3 (HMP 13)

Figure 5.2: Metallographic cross-sections of various high-Cr steels after 1000 h cyclic 
oxidation at 800°C in air 
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5.1.2 Cyclic oxidation behaviour at 900°C 

Figure 5.3 presents weight change results of the selected high chromium steels during cyclic 

oxidation at 900°C in air. In accordance with the 800°C oxidation test, steel JS-3 showed the 

lowest weight change data. The results presented in figure 5.3 b clearly indicate oxide scale 

spallation after relatively short times of a few hundred hours for steels 1.5409 and Alloy 446 

or breakaway oxidation in case of the steels 1.4016 and 1.4016-3C.

Corresponding metallographic cross-sections of the studied materials are presented in figure 

5.4. Steels JS-3, Crofer 22 APU and ZMG232 show good oxide scale adhesion to the metallic 

substrate and a well-developed internal oxidation zone. Steel JS-3 and Crofer B showed flat 

and relatively thin scales with TiO2 as an internal oxide. Two other steels (Crofer A and 

ZMG232) show evidently thicker scales with Al2O3 as an internal oxidation zone and

inclusions of SiO2 at the oxide-metal interface (figure 5.4 b, d). The latter two steels also 

show characteristic metal inclusions within the oxide scale especially in places where large 

agglomerations of Al2O3 in the internal oxidation zone was formed.  

Metallographic cross-sections of Alloy 446 and steel 1.4509 also presented in figure 5.4 show 

substantial spallation of the oxide scale from the metallic substrate, confirming the weight 

change results presented in figure 5.3.  In the case of steels 1.4016 and 1.4016-3C, the 

protective Cr-rich oxide scale is totally destroyed within a few hours, forming Fe-rich oxide 

with thickness of about 100 m. 
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Figure 5.3: Weight change of different ferritic steels (thick specimens, initial thickness 
between 1-2 mm) during cyclic oxidation at 900°C in air 
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a) JS-3 (JEX 12) b) Crofer A (JDA 15)

c) Crofer B (JZF 11) d) ZMG232 (HXT 10)

e) Alloy 446 (HNK 11) f) 1.4509 (HLH 19)

g) 1.4016 (HMM 11) h) 1.4016-C3 (HMP 11)

Figure 5.4: Metallographic cross-sections of various high-Cr steels after cyclic oxidation at 
900°C in air (oxidation time 1000 h, HMM 11 and HMP 11 oxidation up to breakaway) 
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5.2 Selection of the steels for further investigations 

The cyclic oxidation results revealed that the most promising steels in respect to oxidation 

behaviour are JS-3 / Crofer 22 APU type materials. At both studied temperatures, the steels 

showed the lowest oxidation rates without spallation of the oxide scale. In respect to results 

obtained so far the JS-3 / Crofer 22 APU type steels were selected for further, detailed 

investigations. For most of the oxidation tests only Crofer A was used because Crofer B was 

developed and delivered in the final stage of the laboratory studies as a result of investigations 

presented in the thesis (compare section 5.3.5).    

5.3 Oxidation mechanism of JS-3 / Crofer 22 APU type steels  

5.3.1 Long-term oxidation behaviour 

A typical example of the differences in a oxidation rates of Crofer A and JS-3 is presented in 

Figure 5.5, showing that Crofer A exhibits a much higher oxidation rate than JS-3. 

Figure 5.5: Mass change during discontinuous oxidation of steels JS-3 and Crofer A at 
800°C in air 
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Figure: 5.6:  Metallographic cross-sections (SEM images) of the two studied steels after 6000 h 
discontinuous oxidation at 800°C in air. a) Steel JS-3 (JEX 9), b) Steel Crofer A (JDA 12) 

Fig. 5.6 shows the differences in oxide scale morphologies of the two studied ferritic steels 

after 6000 h oxidation at 800°C in air. In both cases the scales consisted of an outer 
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internal oxide precipitates results in the formation of metal protrusions into the oxide scale 
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compared to that on steel JS-3. The higher growth rate of the chromia is very likely related to 

the formation of microcracks in the oxide layer leading to enhanced access of oxygen to the 

metal surface. The cracks will be formed due to the mentioned metal protrusions into the 

oxide scale (volume increase) related to the internal precipitates of silica and alumina. Minor 

amounts of titania were found near the scale / gas interface, especially in the case of steel 

Crofer A. In the scale on this steel, Mn-rich zones were found in the inner chromia based 

layer after the long exposure time of 6000 h (Figure 5.6), however, after this very long 

exposure time, indications for scale spalling were not found on either steel Crofer A or steel 

JS-3.

5.3.2 Early stages of oxidation of JS-3 and Crofer A 

Figure 5.7 shows weight change data during isothermal oxidation (TG) of the studied 

materials at 800°C and 900°C in synthetic air. From the measured weight change data, kp-

values as a function of time were calculated (figure 5.8). Typical oxide scale morphology 

after this short oxidation time is presented in figure 5.9.  

Figure 5.7: Weight change during isothermal oxidation (TG) of steels JS-3 and Crofer A at 
various temperatures in synthetic air. Partially [Piron-2]. 

The results clearly indicate that the oxidation rate of steel JS-3 is much lower than that of 
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Figure 5.8: Measured kp-values as function of time during isothermal oxidation (TG) of 
steels JS-3 and Crofer A at various temperatures in synthetic air. 

Figure 5.9: TEM image of steel JS-3 after 100 h oxidation at 800°C in synthetic air (TG) 
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in both studied cases. The results indicate, that, after this two-layered scale was established, 

the Fe content in the oxide layer on Crofer A is higher than that in the scale on steel JS-3.  

Figure 5.10: SNMS profiles of Steel JS-3 (main elements) after isothermal oxidation at 
800°C in air; a) 1 min, b) 10 min, c) 1 h, d) 24 h 
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Figure 5.11:  SNMS profiles of Steel Crofer A (main elements) after isothermal oxidation at 
800°C in air.  a) 1 min, b) 10 min, c) 1 h, d) 24 h 
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Figure 5.12:  SNMS profiles of Ti, Al, Si for the studied materials after 1 h isothermal 
oxidation at 800°C in air. a) Steel JS-3, b) Steel Crofer A 
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Additionally, indications were found that very minor amounts of Si are present in the 

outermost part of the oxide layer (Fig. 5.12 b).  

It is also necessary to take into account that in the case of both steels, after 24 h oxidation 

time the concentration of Mn in the SNMS profile is relatively high (figures 5.10 d and 5.11 

d). This indicates that the externally growing oxide is probably a CrMn2O4 type spinel as was 

also shown by Malkow for Crofer 22 steel after oxidation at 800°C in Ar-16O2/18O2 [Malkow-

1].

Figure 5.13 shows SNMS depth profiles of steel JS-3 after two-stage oxidation in Ar- 20% 
16O2 / Ar- 20% 18O2 (total exposure time 1 and 25 h respectively). The profiles strongly 

indicate a major outward growth of the scale, likely governed by the formation of the external 

Cr/Mn spinel layer. By analysing the oxygen profiles it is possible to conclude that in the case 

of the profile in figure 5.13 a “mixed” scale growth still occurs (transient oxidation). It means 

that the Cr2O3 scale is formed accompanied by fast Mn outward diffusion [Malkow-1]. Figure 

5.13 b shows the oxide scale after longer oxidation times. In this stage the Cr2O3 scale has 

already formed and formation of the Cr/Mn-spinel phase is a dominating process in that case. 
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Figure 5.13:  SNMS profiles of steel JS-3 after isothermal oxidation at 800°C Ar-O2.
(two-stage oxidation using 18O2 in the second oxidation step)
a) 12 minutes Ar-16O2, 48 minutes Ar-18O2, b) 5 h Ar-16O2, 20 h Ar-18O2
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5.3.3 Effect of minor alloying additions on oxidation behaviour of Crofer type steels

The steels Crofer 22 APU and JS-3 mainly differ in respect to Al and Si contents. Based on 

the results from paragraphs 5.3.1 and 5.3.2, further detailed studies in respect to the influence 

of Si and/or Al impurities for the oxidation behaviour of Crofer 22 APU were carried out. For 

these studies, several model alloys with various additions of Si or Al were prepared. As a base 

material the “pure” steel JS-3 was used. 

Figure 5.14 presents weight change data for steels JS-3 and Crofer A compared with model, 

JS-3 based alloys with 0.1 wt. % Si or Al. It is clearly visible that the addition of Al results in 

a much higher growth rate of the oxide scale than in the case of Si addition.     

Figure 5.14: Mass change during discontinuous oxidation of steels JS-3, Crofer A and model 
alloys with various additions of Si/Al at 800°C in air (specimen thickness ~ 2 mm) 
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a) JS-3 (JEX 4) [Piron-2]  b) Crofer A (JDA 4) [Piron-2]  

c) JS-3 + 0.1 wt. % Si (JLV 3) d) JS-3 + 0.1 wt. % Al (JLT 3)

Figure 5.15: Metallographic cross-sections (SEM images) of steels JS-3, Crofer A and JS-3 base 
model alloys with 0.1 wt. % additions of Si or Al after 1000 h oxidation at 800°C in air 
(specimen thickness ~ 2 mm) 
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formation of metal inclusions will continuously occur, i.e. in parallel to the growth of the 

external chromia base scale, the oxide scale should, also during isothermal exposure, be 

subjected to damage and crack formation. This process is schematically illustrated in figure 

5.16.

If cracks are formed in the scale as a result of metal inclusion formation, the metallic surface 

in the cracks will be directly exposed to the atmosphere. For a description of the re-oxidation 

processes of the metal in the cracked scale areas, we consider the scale formation measured 

by SNMS in the very early stages of the oxidation process for Crofer A. The results in figure 

5.11 clearly reveal that the scale in the early stages of oxidation is quite rich in iron. Longer 

exposure times are needed to form the oxides, which are in equilibrium with the prevailing 

alloy composition, i.e. chromia near the scale/alloy interface and Cr/Mn-spinel at the interface 

with the gas. It is therefore likely, that the formation of Fe-rich oxide will also initially occur 

during the healing process of the formed micro cracks, especially because the alloy near the 

interface with the oxide will at that moment already be depleted in Cr and especially Mn. 

Longer times are needed to again form a Cr-rich oxide scale. The amount of Fe-rich oxide 

formed in the crack will depend on the Cr and Mn contents prevailing at the scale/alloy 

interface, the amount of Fe oxide increasing with decreasing Cr- and Mn content. The initially 

formed Fe-rich oxide will subsequently become incorporated into the healed Cr based scale. 

At low amounts of Fe-rich oxide, it will become dissolved in the chromia thus leading to a Fe-

doped chromia scale, which results in higher growth rates compared to that of “pure” 

chromia.  

Indications for Fe-dissolution in the chromia scale have already been indicated by other 

authors [Wood-4] and also found by our own SNMS depth profiles as well as EDX-analyses 

of specimens after long-term exposure. However, an unequivocal, quantitative value was 

difficult to derive, because the SNMS analyses were affected by the non-even oxide/alloy 

interfaces whereas the absolute accuracy of the EDX analyses was affected by its limited 

lateral and depth resolution.
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Figure 5.16: Proposed scale formation mechanism in case of steel Crofer A 

Some experimental evidence for the significance of microcrack formation and healing in the 

overall oxidation process was found in oxide scales after long term exposure. Comparing 

images in figure 5.6 both steels JS-3 and Crofer A exhibit the well-known two-layered oxide 

morphology consisting of an outer spinel layer on top of an inner chromia scale, the latter 

being substantially thinner in steel JS-3. In steel Crofer A “bands” of Mn-rich oxide were 

found in the chromia scale arranged perpendicular to the scale/alloy interface. It is believed 
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“crack-healing”. Bands of similar morphologies were frequently found in the chromia scale 

formed on thin specimens of steel JS-3, as illustrated for a 0.2 mm specimen after 900 h

exposure at 900°C (Fig. 5.17). However, in this case the oxide bands are not rich in Mn but in 

Fe. They become clearly visible if the exposure times approached the time to breakaway 

oxidation. Apparently the limited reservoir of the protective-scale forming elements Cr and 

Mn have been so extensively depleted, that a crack healing by formation of Cr- and Cr/Mn-

rich oxide could no longer proceed and Fe-rich oxide bands were formed.  

Fig. 5.17: Metallographic cross-section of 0.2 mm thick specimen of steel B after 900 h cyclic 
oxidation at 900°C in air (breakaway) 

For steel JS-3 (Figure 5.15 a) the oxide scale is much less affected by the formation of an 

internal oxidation zone. The reason for that could be that there is less Ti in steel JS-3 (~ 0.05 

wt. %) than Si and/or Al in Crofer A (~ 0.1 wt. %). Besides, the fine, spherical internal oxide 

precipitates of titania result in strengthening of the near-surface region, and thus reducing the 

tendency for the occurrence of surface wrinkling. The rod shaped precipitates found for silica 

and especially for alumina develop much more rapidly than the spherical ones [Joung-1] 

which causes a fast volume changes in Al2O3 precipitates and thus deformation of the surface 

oxide scale.

5.3.4 Effect of water vapour on the air oxidation behaviour of Crofer type steels

To simulate the real conditions of the SOFC stack, in most studied cases laboratory air was 

used for the oxidation experiments. It is, however, necessary to take into account, that the 

laboratory air contains some water vapour. Also, hydrogen can diffuse from the anode side 

through the metallic interconnect resulting in formation of water vapour at the cathode side.  

It was reported by several authors [Otsuka-1, Fujikawa-1, Garcia-1, Pint-1] that the addition 

of water vapour enhances the oxidation rate of iron based high-Cr steels. Therefore, 
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isothermal oxidation studies (TG) were performed in two different controlled atmospheres, 

synthetic air (dry air) and synthetic air + 7 % H2O (wet air).

Figure 5.18 shows weight change data for Crofer A (thick specimens of 2 mm thickness, 

compare section 6.1.3) during isothermal oxidation (TG) at 900°C in various atmospheres. It 

was found that at least for short oxidation times of 100 h there is hardly any difference in the 

oxidation rate between wet and dry air exposures. Metallographic cross-sections (SEM 

images) after 100 h isothermal oxidation at 900°C in the discussed atmospheres are presented 

in figure 5.19. The oxide scale thickness and the depth and shape of the internal oxidation 

zones are practically the same. The only minor difference between the oxides scales is that for 

dry air large crystals of (Mn,Cr)3O4 occur, while in wet air the spinel forms as a dense, 

compact layer.      

Figure 5.18: Mass change during isothermal oxidation of steel Crofer A at 900°C in various 
atmospheres (wet air: synthetic air + 7 % H2O). 
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a) b) 
Figure 5.19: Oxide scale morphology (SEM images) of steel Crofer A after 100 h isothermal 
oxidation at 900°C in various atmospheres; a) - dry air (synthetic air), b) - wet air (synthetic air 
+ 7 % H2O)

5.3.5 Optimisation of steel Crofer 22 APU (Crofer B) 

In accordance with experimental results shown in sections 5.3.1 – 5.3.3 minor alloying 

additions of Si and/or Al play a very important role in the oxidation behaviour of Crofer 22 

APU type materials. The mentioned elements accelerate the oxide growth rate of the steel, 

therefore making the material less useful for SOFC applications. Therefore, after the first 

commercial batch of Crofer 22 APU (with “high” concentrations of impurities of Si and Al) 

further batches were produced with reduced amounts of Si / Al making the steel compositions 

more similar to those of steel JS-3. To prevent nomenclature misunderstanding in the present 

studies, the first commercial batch of Crofer 22 APU (“high” concentration of impurities of 

Al and Si) is described as Crofer A, while further Crofer 22 APU batches (with reduced 

amounts of Si/Al) are described as Crofer B.

Figure 5.20 compares weight change data of steel JS-3, Crofer A and one of the newer 

batches of Crofer 22 APU (Crofer B) during air oxidation at 800°C. The data shows that the 

oxidation rate of Crofer B is substantially smaller than that of Crofer A, however it is still 

slightly higher than that of steel JS-3. Microstructural characterisation (figure 5.21) reveals 

the scale on Crofer B to be similar to that on steel JS-3 (Compare figure 5.15).  
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Figure 5.20: Mass change during discontinuous oxidation of steels JS-3, Crofer A and Crofer 
B at 800°C in air 

a) b) 
Figure 5.21: Metallographic cross-sections (SEM images) of steel Crofer B after 1000 h 
oxidation at 800°C in air, showing differences in oxidation attack on different locations of the 
specimen (compare Figure 5.15 a, b). 
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interface between the oxide scale and the steel. This effect was actually found for one Crofer 

variant (Crofer C), which contained hardly any lanthanum (figure 5.22)      

Figure 5.22: Metallographic cross-sections of steel Crofer C (hardly any La addition) after 250 h 
oxidation at 800°C in air, showing formation of voids at the scale/alloy interface due to the 
absence of reactive elements. 

Another example of the interactions between minor alloying elements and impurities could be 

the formation of Ti-carbides / nitrides because of high amounts of carbon/nitrogen in the steel. 

This has a consequence that titanium could not be evenly distributed in the steel causing a 

change in size and quantity of the titania internal oxidation zone formed during oxidation 

(Figure 5.21 b). The enhanced oxidation as a result of in-scale nodule formation seems to be 

related to local, preferential formation of internal oxides on alloy grain boundaries.

5.4 Summary of differences in oxidation behaviour of high-Cr ferritic steels  

Fe based high-Cr ferritic steels seem to be good candidate materials as interconnects for 

SOFC applications. After characterisation of several high-Cr ferritic steels (commercial and 

specially designed for SOFC interconnectors) the most promising results show the steels JS-3 

/ Crofer 22 APU. These steels possess the best oxidation protection and excellent adhesion of 

the oxide scale to the metallic substrate at both studied temperatures of 800°C and 900°C.

One of the most important factors in the case of possible SOFC applications of high-Cr 

ferritic steels is the concentration of scale forming elements in the alloy. In the present 

studies, ferritic steels with a Cr contents between 16 and 24 wt % were investigated. It was 

found that for a relatively low Cr content of 16 wt. % breakaway oxidation related to Cr 

depletion occurs after very short times when oxidised in air at 900°C. Therefore, higher 
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chromium concentrations (i.e. ~ 24 wt. %) seem to be advisable to prevent fast destruction of 

the steel due to an insufficient Cr reservoir.

Detailed characterisation of steels JS-3 and Crofer 22 APU after different kinds of oxidation 

tests (long term exposures as well as short-term oxidation tests) showed outward growth of 

the scale, likely governed by the formation of the external Cr/Mn spinel layer if oxidised at 

800°C and 900°C in air. The top spinel layer of (Cr,Mn)3O4 is known to reduce the formation 

of volatile Cr species [Piron-1, 3, Gindorf-2] reducing poisoning of the cathode in the  

SOFC’s.

It was found that the presence of manufacturing related impurities (Si, Al) in steel Crofer A 

results in an evident changes in the oxide scale morphology compared to steel JS-3. The 

volume increase imparted by formation of internal oxide precipitates of Si and Al results in 

the formation of metal protrusions into the oxide scale. This caused an increase of the 

oxidation rate of the chromia because of oxide scale cracking and thus enhanced access of 

oxygen to the metal surface. The higher oxidation rate of the inner chromia layer, leads to a 

clear difference of the (Mn,Cr)3O4/Cr2O3 ratio in the surface scale compared to that on steel 

JS-3.

It was found that there is hardly any difference in the oxidation rate between wet and dry air 

at least in the first 100 hours of oxidation when oxidising thick specimens of steels JS-3 / 

Crofer A. (compare section 6.1.3, atmosphere effect)    

Reduction of Si and Al contents in steel Crofer B substantially reduces the oxidation rate of 

the steel thus making the material more promising for SOFC applications. 
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6. Oxidation induced lifetime limits of chromia forming ferritic steels  

6.1 Cyclic oxidation behaviour of components with different thicknesses 

It this section components with different initial thicknesses were investigated. A number of 

commercial ferritic steels (paragraph 6.1.1) as well as model high-Cr alloys (paragraph 6.1.2) 

were used for the oxidation experiments. Detailed information about specimen preparation 

techniques and experimental procedures were given in section 4.    

6.1.1 Cyclic oxidation behaviour of selected commercial steels 

The most promising materials for SOFC interconnectors from the previous studies (compare 

section 5) were chosen and investigated during long-term cyclic oxidation at 800°C and 

900°C in laboratory air. For the most extensive studies Crofer A was chosen because a 

number of plates with different initial thicknesses already existed (thickness range 2 mm – 0.1 

mm). From the most other steels only one plate of each alloy prevailed and thus specimens of 

different thickness were made by grinding the thick specimens to the required levels.     

Steel Crofer A 

Figures 6.1 and 6.2 show weight change results during long-term oxidation tests at both 

studied temperatures (800°C and 900°C). In both cases there is clear difference in the 

oxidation rate between various component thicknesses (i.e. thinner specimens oxidise faster 

than thicker ones). At 900°C (figure 6.2) the effect is more pronounced than at 800°C and 

additionally breakaway oxidation phenomena can be found for the two thinnest specimens 

(i.e. 0.1 mm and 0.3 mm). Figures 6.3 and 6.4 show the measured parabolic kp-values as a 

function of time presented for both temperatures. Most of the specimens show a near 

parabolic time dependence of the scaling rate. In the case of the specimen with an initial 

thickness of 0.1 mm oxidised at 900°C in air (figure 6.4) a steady increase of kp during the 

oxidation process was observed. This effect is related to breakaway phenomenon occurring 

after a short oxidation time of about 100 h.   

During post-experimental macroscopic observations of the thinnest specimens (Figure 6.5, 6.6 

and 6.7) a strong mechanical deformation of the metallic substrate was found. This effect is 

related to a non-homogeneous stress distribution in the specimen during the oxidation process 

(compare sections 6.1.3 and 6.2).  
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Figure 6.1: Weight change during cyclic oxidation of steel Crofer A at 800°C in air 
(specimens with different initial thicknesses) 

Figure 6.2: Weight change during cyclic oxidation of steel Crofer A at 900°C in air 
(specimens with different initial thicknesses) 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 200 400 600 800 1000 1200 1400
Time [h]

M
as

s 
ch

an
ge

 [m
g/

cm
2 ]

0.1 mm (JMB 1) 
0.3 mm (JMC 1) 

0.5 mm (JMD 1) 

2.0 mm (JDA 15) 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 200 400 600 800 1000 1200 1400
Time [h]

M
as

s 
ch

an
ge

 [m
g/

cm
2 ]

0.1 mm (JMB 2) 

0.3 mm (JMC 2) 

0.5 mm (JMD 2)

2.0 mm (JDA 13)



6.   Oxidation induced lifetime limits of chromia forming ferritic steels

73

Figure 6.3: Measured parabolic kp – values as a function of time during cyclic oxidation of 
steel Crofer A at 800°C in air (specimens with different initial thicknesses) 

Figure 6.4: Measured parabolic kp – values as a function of time during cyclic oxidation of 
steel Crofer A at 900°C in air (specimens with different initial thicknesses) 
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Figure 6.5: Macro images of specimens with different initial thicknesses (steel Crofer A) 
after 1000 h cyclic oxidation at 800°C in air 

Figure 6.6: Macro image of specimen with 0.1 mm initial thickness (steel Crofer A) after 
1000 h cyclic oxidation at 800°C in air showing deformation of the specimen after oxidation 

Figure 6.7: Macro images of specimens with different initial thicknesses (steel Crofer A) 
after cyclic oxidation at 900°C in air showing breakaway and deformation of the specimens 
after oxidation 

Figure 6.8 presents metallographic cross-sections and oxide scale morphologies (SEM 

images) of steel Crofer A for specimens with different initial thicknesses after 1000 h 

oxidation at 800°C in air (compare figure 6.1). In all studied cases a double-layered oxide 

scales are found (Cr/Mn-spinel and chromia). It was found that there is a clear difference in 

the thickness of the oxide scale between the 2 mm specimen (figure 6.8 a) and the specimen 

with an initial thickness of 0.1 mm (figure 6.8 d). SEM images clearly show that on the thin 

specimen the layer of Cr/Mn spinel is thinner than that on thick specimens. It can be found 

that the higher oxidation rate of the thin specimen compared to the thick one is determined by 

the formation of a thick Cr2O3 scale. It is also possible to observe that for the thick specimens 

the zone of internal oxidation is much more developed than that of the thin specimens 
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(compare section 6.1.3). This effect is related to faster depletion of minor alloying elements 

and/or impurities (Ti, Si, Al) from the specimen with a smaller initial thickness due to its 

smaller reservoir [Ertl-1].     

Oxide surface images presented in figure 6.8 b, c and e show a similar oxide scale 

morphologies for both specimens. Two different sizes of oxide crystals can be observed 

across the specimen surface for the thick as well as the thin specimen. Based on EDX 

analyses it was found that both observed structures are Cr/Mn spinel. 

 Figure 6.9 presents metallographic cross-sections and oxide scale morphologies (SEM 

images) of steel Crofer A for specimens with different initial thicknesses after 1000 h 

oxidation at 900°C in air (compare figure 6.2). In all studied cases double-layered oxide 

scales can be found (Cr/Mn-spinel and chromia). As in case of the 800°C experiment there is 

a clear difference in the oxide scale thickness when specimens of different thickness are 

compared. The growth rate of the chromia scale (thicker scale for the thinner specimens) 

determined the higher oxidation rate of thinner specimens (figure 6.9 a, c, e). It is also found 

that the morphology of the internal oxidation zone is much more developed in the case of the 

thicker specimens.   

During observation of the oxide scale morphology for specimens with a different initial 

thickness (figure 6.9 b, d, f) it can be found that, different from the 800°C exposures, only one 

size of Cr/Mn crystal is present after oxidation in 900°C. It is probably related to the faster 

diffusion of Mn at higher temperatures and thus the faster growth rate of spinel across the 

whole specimen surface.     
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a) d)

b) e)

c)

Figure 6.8: Oxide scale morphology (SEM 
images) of steel Crofer A after 1000 h cyclic 
oxidation at 800°C in air – specimens with 
different initial thicknesses 
a), b), c) - 2 mm thickness (batch: JDA)
d), e) - 0.1 mm thickness (batch: JMB) 
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a) b)

c) d)

e) f)
Figure 6.9: Oxide scale morphology (SEM images) of steel Crofer A after 1000 h cyclic 
oxidation at 900°C in air - specimens with different initial thicknesses; a), b) - 2 mm thickness, 
c), d) - 0.5 mm thickness, e), f) - 0.3 mm thickness 

Figure 6.10 shows oxide scale morphology (SEM images) for a specimen with 0.1 mm 

thickness oxidised for 250 h at 900°C in air (until breakaway). It can be concluded that where 

no breakaway was found (figure 6.10 a, b) there is only a very thin film of Cr/Mn spinel on 

top of the thick chromia layer. In areas of breakaway (Figure 6.10 c, d) several cracks through 

the oxide scale are observed. The oxide scale in that case consisted of fast inward and outward 

grown Fe- oxide, which is surrounded by initially grown Cr-rich oxides (Cr2O3 and Cr/Mn 

spinel).
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a) b)

c) d)
Figure 6.10: Oxide scale morphology (SEM images) of steel Crofer A after 252 h cyclic 
oxidation at 900°C in air (breakaway) - specimen thickness: 0.1 mm; a), b) - area without 
breakaway, c), d) - area with breakaway 

Steel JS-3 

Figures 6.11 and 6.12 show weight change results for the studied semi-commercial ferritic 

steel JS-3 during oxidation at 800°C and 900°C in air. Analogous to the results derived for 

steel Crofer A, there is a clear difference in the oxidation rates between specimens of different 

thickness. However, after longer oxidation times a deviation from the parabolic oxide growth 

rate were observed (compare section 6.2). In the case of the thinnest specimens oxidised at 

900°C breakaway oxidation occurred after relatively short oxidation times, i.e. after shorter 

times than Crofer A. 

Figure 6.13 shows metallographic cross-sections of specimens (SEM images) of steel JS-3 

after 1000 h oxidation at 800°C in air with different thicknesses. In all studied cases, a 

double-layered oxide scale can be found (Cr/Mn-spinel and chromia). It was found that there 

is a clear difference in the oxide scale thickness on the various specimens (compare figure 

6.11).
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Figure 6.14 presents metallographic cross-sections (SEM images) of steel JS-3 after 1000 h 

oxidation at 900°C in air. In all studied cases, a double-layered oxide scale can be found. Also 

here, there is a clear difference in the thickness of the oxide scale between specimens with 

different thicknesses (compare figure 6.12). Additionally, a strong indication of oxide 

cracking during the oxidation and/or cooling was observed for the two thinner specimens 

(figure 6.14 b, c).  Furthermore, if a cracked oxide scale is found, then the thickness of the 

Cr/Mn – spinel layer appears to be non-homogeneous in thickness (figure 6.14 c, compare 

sections 6.1.3 and 6.2). 

Figure 6.15 shows a metallographic cross-section (SEM image) of steel JS-3 after 216 h 

oxidation at 900°C in air (breakaway). The specimen area without breakaway (figure 6.15 a) 

shows an oxide scale with a very thin Cr/Mn spinel layer on top of the thick inner chromia 

scale. The area with breakaway (figure 6.15 b) presents a relatively early stage of the 

catastrophic attack where Fe-rich oxide started to grow through the cracked Cr- rich oxide 

(compare section 6.2). 

Figure 6.11: Weight change during cyclic oxidation of steel JS-3 (batch JEW) at 800°C in air 
(specimens with different initial thicknesses).  
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Figure 6.12: Weight change during cyclic oxidation of steel JS-3 (batch JEW) at 900°C in air 
(specimens with different initial thicknesses).  

a) c) 

b) d) 
Figure 6.13: Oxide scale morphology (SEM images) of steel JS-3 (batch: JEW) after 1000 h 
cyclic oxidation at 800°C in air; a), b) - 2 mm thickness, c), d) - 0.3 mm thickness 
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a) c) 

b)

Figure 6.14: Oxide scale morphology (SEM 
images) of steel JS-3 (batch: JEW) after 1000 h 
cyclic oxidation at 900°C in air - specimens 
with different thicknesses 
a) - 2 mm thickness   
b) - 1.2 mm thickness  
c) - 0.6 mm thickness 

a) b)
Figure 6.15: Oxide scale morphology (SEM images) of steel JS-3 (batch: JEW) after 216 h cyclic 
oxidation at 900°C in air (breakaway) - specimen thickness: 0.3 mm; a) - area without breakaway,  
b) - area with breakaway 

Steel Crofer B

Figures 6.16 and 6.17 present weight change data for Crofer B after 1000 h cyclic oxidation at 

800 and 900°C in air. During the 900°C experiment (figure 6.17) breakaway oxidation occurs 

in thin components. At both studied temperatures there is a clear difference between the 

oxidation rates in thick and thin specimens.  
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Figures 6.18 and 6.19 show metallographic cross-sections  (SEM images) of samples with 

different specimen thicknesses at both studied temperatures. In all studied cases the well-

known double-layered oxide scale can be found. At 800°C as well as at 900°C there is a clear 

difference in the oxide scale thickness between thick and thin components. The thin 

components studied at the 900°C (Figure 6.19 b) additionally show the indication of oxide 

cracking during the oxidation process and/or cooling (compare sections 6.1.3 and 6.2).   

Figure 6.16: Weight change during cyclic oxidation of steel Crofer B at 800°C in air (specimens 
with different initial thicknesses).  

Figure 6.17: Weight change during cyclic oxidation of steel Crofer B at 900°C in air (specimens 
with different initial thicknesses).  
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a) b)
Figure 6.18: Oxide scale morphology (SEM images) of steel Crofer B (batch: KCB) after 1000 h 
cyclic oxidation at 800°C in air; a) - 1.7 mm thickness, b) - 0.3 mm thickness 

a) b) 
Figure 6.19: Oxide scale morphology (SEM images) of steel Crofer B (batch: KCB) after 1000 h 
cyclic oxidation at 900°C in air: a) - 2.0 mm thickness, b) - 0.5 mm thickness 

Steel ZMG232 

Figures 6.20 and 6.21 present weight change data during cyclic oxidation of steel ZMG232 at 

both studied temperatures. Breakaway oxidation after 900°C exposure was found for the three 

thinnest specimens after various oxidation times. It was observed that at 800°C and 900°C, 

thinner specimens oxidised faster than the thicker ones. 

Figures 6.22 and 6.23 show metallographic cross-sections (SEM images) of steel ZMG232 

after oxidation at both studied temperatures (specimens with a different initial thickness). 

After exposure at 800°C the difference in oxide scale thickness is relatively small which is in 

good agreement with the data presented in figure 6.20 (small difference between oxidation 

rate of specimens). Cross-sections made on 900°C samples show a large difference in the 

oxide scale thickness between the two studied specimens. In all studied cases at 800°C as well 

as at 900°C, a near-continuous layer of silica can be found beneath the Cr-rich oxide scale.  
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Figure 6.20: Weight change during cyclic oxidation of steel ZMG232 (batch HXT) at 800°C 
in air (specimens with different initial thicknesses).  

Figure 6.21: Weight change during cyclic oxidation of steel ZMG232 (batch HXT) at 900°C in 
air (specimens with different initial thicknesses).  
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a) b) 
Figure 6.22: Oxide scale morphology (SEM images) of steel ZMG232 (batch: HXT) after 1000 h 
cyclic oxidation at 800°C in air; a) - 1.0 mm thickness, b) - 0.3 mm thickness 

a) b)
Figure 6.23: Oxide scale morphology (SEM images) of steel ZMG232 (batch: HXT) after 1000 h 
cyclic oxidation at 900°C in air; a) - 1.0 mm thickness, b) - 0.5 mm thickness 

6.1.2 Cyclic oxidation behaviour of selected model alloys 

Results derived during cyclic oxidation of the selected commercial ferritic steels at 800 and 

900°C in air (compare section 6.1.1) show a strong difference of the oxide scale thickness for 

thick and thin components. In all studied cases a double-layered oxide scale formed (Cr/Mn 

spinel and chromia), however there is a change between the thickness ratio of Cr/Mn spinel to 

Cr2O3 when comparing thick and thin specimens oxidised at the same temperature. To clarify 

the role of Mn in the oxide scale formation, a Mn-free model steel (Mn concentration ~ 0.01 

wt %) as well as a model steel with a relatively high Mn content (~ 1.5 wt. %) were tested 

under the same experimental conditions as the steels in the previous section.
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Model steel FeCrLa (Mn free steel, HCE) 

Figures 6.24 and 6.25 show weight change data versus time for the specimens with different 

initial thicknesses at 800 and 900°C in air. The steel shows a strong dependence of oxidation 

rate for different component thicknesses during the 900°C oxidation test. The two thinnest 

specimens showed breakaway oxidation occur after various oxidation times. At 800°C (figure 

6.24), the thinner specimen oxidised faster than the thick one, however the effect is less 

substantial than in the case of the 900°C.

Figures 6.26 and 6.27 present metallographic cross-sections (SEM images) of specimens with 

different thicknesses after oxidation at both studied temperatures. In this case, the oxide scale 

consisted of a thick, single layer of chromia. The results confirm the weight change data from 

figures 6.24 and 6.25 showing that at 800°C, the oxide scale thickness in the two studies are 

almost identical, however at 900°C the thin specimen shows a much thicker oxide scale than 

the thick specimen after the same oxidation time. 

Figure 6.28 shows metallographic cross-sections of the thin specimen of model steel HCE 

oxidised at 900°C until breakaway. Such components studied during oxidation at 900°C show 

the indication of oxide cracking during oxidation and/or cooling (compare section 6.2).   

Figure 6.24: Weight change during cyclic oxidation of model alloy HCE at 800°C in air 
(specimens with different initial thicknesses).  
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Figure 6.25: Weight change during cyclic oxidation of model alloy HCE at 900°C in air 
(specimens with different initial thicknesses).  

a) b) 
Figure 6.26: Oxide scale morphology (SEM images) of model steel HCE after 1000 h cyclic 
oxidation at 800°C in air; a) – 1.2 mm thickness, b) – 0.3 mm thickness 

a) b) 
Figure 6.27: Oxide scale morphology (SEM images) of model steel HCE after 1000 h cyclic 
oxidation at 900°C in air; a) – 2.0 mm thickness, b) – 0.6 mm thickness 
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a) b)
Figure 6.28: Oxide scale morphology of model steel HCE after 468 h cyclic oxidation at 900°C in 
air; a) – area without breakaway (SEM image), b) – area with breakaway (metallography) 

Model steel FeCrMnY (high Mn concentration, HCH) 

Figures 6.29 and 6.30 show weight change data versus time for the model steel HCH for long-

term oxidation at 800 and 900°C in air. At both studied temperatures, thick as well as thin 

specimens show similar weight change results. At 900°C, the weight change of the thin 

specimens is slightly lower than that of the thick one despite the fact that breakaway oxidation 

occurred in the thin specimen.     

Figures 6.31 and 6.32 present metallographic cross-sections (SEM images) for steel HCH 

after long-term oxidation at 800 and 900°C in air. At 800°C, the oxide scale consisted of an 

outer layer of Cr/Mn spinel, chromia layer beneath and Mn-rich oxide at the scale alloy 

interface. There is no difference in oxide scale thickness between the two studied specimens. 

Cross-sections presented in figure 6.32 (900°C) show a double-layered oxide scales (Cr/Mn 

spinel and chromia) in both cases. In the case of the thin component, the oxide scale is thinner 

than that of the thick component. Besides, a clear difference exists in the Cr/Mn spinel – 

Cr2O3 ratio for samples with different initial thicknesses (compare section 6.1.3). 
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Figure 6.29: Weight change during cyclic oxidation of model alloy HCH at 800°C in air 
(specimens with different initial thicknesses).  

 Figure 6.30: Weight change during cyclic oxidation of model alloy HCH at 900°C in air 
(specimens with different initial thicknesses).  
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 a)  b) 
Figure 6.31: Oxide scale morphology (SEM images) of model steel HCH after 1000 h cyclic 
oxidation at 800°C in air; a) – 1.2 mm thick, b) – 0.4 mm  thick 

a) b) 
Figure 6.32: Oxide scale morphology (SEM images) of model steel HCH after cyclic oxidation at 
900°C in air; a) – 1.2 mm thick (oxidation time 1000 h), b) – 0.1 mm  thick (oxidation time 900 h, 
breakaway)

6.1.3 Oxidation rate dependence on the specimen thickness – discussion   

Summarising the long-term oxidation studies for the investigated steels it can be concluded 

that, with exception of steel HCH, there is a clear difference in the oxidation rate between 

specimens of different component thicknesses. In other words, the oxidation rate kp is higher 

for thinner than for thicker components. In this section a detailed discussion about a possible 

explanations for this effect will be elaborated.   

Depletion of chromium 

A first possible explanation for this kp dependence on specimen thickness might be that the 

continuing depletion of scale forming elements, mainly Cr, leads to a change in the 

composition of the surface scale and consequently to a change in the oxide growth rate. For 

Fe – xCr ferritic steels (x = 16 - 20 wt. %, i.e. even for Cr contents which provide protective 

scale formation) it was found by several authors that a lower initial concentration of 
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chromium in the alloy leads to a slight increase in the parabolic oxidation rate (kp) [Wright-1, 

Malkow-2]. Upon oxidizing specimens of different initial thickness, the Cr content remaining 

in the alloy after a given period of time will be higher in thicker than in thinner specimens, 

because the latter possess a smaller Cr reservoir. If the oxidation rate would strongly depend 

on the Cr content, a steady increase of kp during the oxidation test should be observed, 

whereby the time dependence should depend on specimen thickness. However, the results 

presented in figures 6.3 and 6.4 for Crofer A specimens show that, especially at 900°C, no 

increase of kp as a function of oxidation time was observed. It is of course necessary to point 

out that there is a difference between the oxidation behaviour of steels with initially variable 

amounts of chromium (compare figure 3.10) and steels where chromium is depleted due to 

oxidation.

Depletion of minor alloying elements 

Minor alloying additions (in a range of a few hundreds to a few tenths of a percent) are known 

to play an extremely important role in the high temperature behaviour of high-Cr ferritic 

steels (compare section 3.3.2). For thick sheets, the reservoir of the mentioned elements (i.e. 

Mn, Ti, La, Y, etc.) in the steel is high enough and therefore they fulfil their task during the 

oxidation process. However, when the oxidised specimen is relatively thin the depletion of the 

mentioned elements can have a great influence on the oxidation behaviour in the later stages 

of oxidation.

Most of the iron based high-Cr ferritic steels for SOFC applications contain of a few tenths of 

a percent of Mn to create an outer Cr/Mn spinel layer preventing high evaporation of 

chromium and thus poisoning the cathode in SOFC’s [Quadakkers-1]. During oxidation 

studies of the model steel HCH (high Mn content of ~ 1.5 wt. %) at 900°C in air (compare 

section 6.1.2) it was found that the thin component had a relatively thin oxide layer of Cr/Mn 

spinel when compared with the spinel thickness for the thick specimen (compare figure 6.32). 

EDX manganese depletion profiles performed for both specimens (figure 6.33) show a clear 

difference in the distribution of Mn after the oxidation process for the samples with different 

initial thicknesses. The data indicates that for the thin component of steel HCH (figure 6.33 b) 

manganese was totally depleted from the alloy during oxidation and therefore no more spinel 

could be formed during further oxidation. Likewise, the manganese profile for the thick 

specimen (figure 6.33 a) shows that there is still a large Mn reservoir in the steel and therefore 

further spinel formation is possible. To confirm this finding a theoretical calculation was 

performed taking into account the Mn concentration in the alloy for different component 
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thicknesses and the theoretical spinel thicknesses, which can be formed from the prevailing 

reservoir of manganese.  

Theoretically, the thickness of the spinel can be calculated using the formula: 

s

sp
sp S

V
d           (6.1) 

where: spd is spinel thickness (in m ) built on the specimen surface, spV is a spinel volume 

and sS  is the surface of the specimen. 

Knowing the mass and volume of the specimen it is easy to calculate the mass of the Mn in 

the specimen from the steel composition. From the reaction of the formation of Cr/Mn spinel 

it is possible to calculate the mass of spinel formed from the mass of manganese. Knowing 

the mass of the spinel and its density (4.91 mg cm-3 [Database]) spV  can be calculated and 

used in equation 6.1. Calculated values for the maximum thickness of the Cr/Mn spinel for 

the FeCrMnY model steel (HCH) and Crofer A (JDA) are presented in Table 6.1. 

Steel Batch 
Initial Mn 

concentration 
[wt. %] 

Specimen 
thickness 

[mm] 

Calculated
maximum 

thickness of 
Cr/Mn spinel 

[ m]

Experimental data of 
thickness of Cr/Mn 

spinel after oxidation at 
900°C in air 

[ m]
1.2 53      ~ 10   (after 1000 h oxidation)FeCrMnY HCH 1.55 0.1 4.7        ~ 3   (after 900 h oxidation)
2 19        ~ 3   (after 1000 h oxidation)Crofer A JDA 0.4 0.1 1.22        ~ 1   (after 250 h oxidation)

Table 6.1: Calculation of the theoretical maximum spinel thickness using equation 6.1 

Analysing the calculated data shown in Table 6.1 one may conclude that for the thick 

specimen (1.2 mm) of model steel FeCrMnY (HCH) it is theoretically possible to form a ~ 53 

m of Cr/Mn spinel, however for 0.1 mm specimen, the theoretical maximum thickness of 

Cr/Mn spinel layer is only ~ 4.7 m.  

An analogous consideration is also valid for JS-3 / Crofer 22 APU type steels which contains 

only a relatively low Mn content (compared to model steel HCH). The Mn can be depleted 

very rapidly in the thin specimens (i.e. 0.1 mm). Figures 6.8, 6.10 and 6.15 present examples 
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of very thin Cr/Mn spinel layers as a result of Mn depletion because of an insufficient Mn 

reservoir in thin components.  

One of the possible explanations for the kp-dependence on specimen thickness can be that 

after depletion of manganese in thin specimens, formation of a pure chromia scale is possible 

in the later stages of the oxidation. Changing from the formation of a double-layered oxide 

scales (Cr/Mn spinel and chromia) to a single layer of chromia could therefore be responsible 

for the change of the oxidation rate in thinner components. In other words, formation of 

Cr/Mn spinel suppresses faster chromia formation in thick components. That would explain 

the thicker layer of chromia for the thinnest specimens in long-term exposures.  

a) b) 
Figure 6.33: Oxide scale morphology (SEM images) and corresponding Mn depletion profiles of 
high-Mn model steel HCH after cyclic oxidation at 900°C in air; a) – 1.2 mm thickness (oxidation 
time 1000 h), b) – 0.1 mm thickness (oxidation time 900 h, breakaway) 

Confirmation for this hypothesis can be seen in the oxidation behaviour of selected model 

steels (paragraph 6.1.2) with different manganese contents. One of the steels where the 

thickness dependence of kp was not observed is the high-Mn model steel FeCrMnY (HCH). In 

this case, especially during the 800°C exposure the manganese reservoir in thick as well as 
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thin components was high enough to form a Cr/Mn spinel during the whole oxidation process. 

On the other hand, in steel HCE (model steel with trace impurity of Mn) a clear kp-

dependence as function of component thickness was observed at both studied temperatures. 

Depletion of Mn in such a case is extremely fast making chromia growth responsible for the 

oxidation process. 

Another important aspect if considering depletion of minor alloying additions can be 

depletion of reactive elements (i.e. La, Y, etc.) in the alloy. Among other factors, addition of 

reactive elements into the steel slows down the oxidation rate during the high temperature 

exposure. If one assumes that, as for manganese, reactive elements are also depleted from the 

steel matrix (incorporation into the scale), then the oxidation rate could probably be hastened 

for the thinner specimens. 

Internal oxidation 

The minor alloying elements Si, Ti and/or Al might also play a role in the kp dependence on 

specimen thickness. All these elements tend to internally oxidise, resulting in a “generation of 

volume” and thus stress formation in the bulk alloy (compare sections 5.3.1 and 5.3.3). The 

resulting plastic deformation of the substrate and its effect on scale formation will be more 

pronounced for a thin than for a thick specimen. On the other hand it was observed that in thin 

components depletion of silicon and especially aluminium took place which reduced the 

width of the internal oxidation zone in thinner components (compare figure 6.8)       

Doping effect in the oxide scale  

The explanation of the thickness dependent oxidation rate has to incorporate the fact that 

oxidation rates of the studied steels (especially Crofer A) are in certain periods of the 

exposure affected by in-scale microcrack formation (see section 5.3.3). This is the case even 

during isothermal exposure but is expected to become even more pronounced during thermal 

cycling.

If we consider the micro crack-formation and –healing mechanism mentioned in section 5.3.3 

(figure 5.16) comparing two specimens of different thicknesses, then the Cr and Mn content at 

the scale/alloy interface at the base of a micro crack will, because of the differences in Cr- and 

Mn-reservoir, after a given oxidation time be smaller in the thinner than in the thicker 

specimen. Consequently, the oxide on the thinner specimen will tend to incorporate larger 
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amounts of Fe than the oxide on the thicker specimen. The oxide on the thin specimen will 

tend to experience a stronger increase in growth rate by Fe incorporation than that on the thick 

specimen. 

Oxide growth and thermally induced stresses  

The change in oxidation rate with changing specimen thickness could also be related to 

stresses generated during the oxidation process. Growth stresses in the oxide [Schütze-1, 

Schütze-2] may lead to plastic deformation of the metallic substrate [Wilber-1]. Assuming the 

growth stresses in the oxide to be compressive, and thus the stresses in the bulk alloy to be 

tensile, the specimen would in the ideal case increase in length [Evans-1] (see also: 

Elongation effect, section 6.1.3). The length increase will depend on numerous factors such as 

the magnitude of the growth stress, the creep resistance of the alloy as well as the thickness of 

the oxide scale and the metallic substrate [Schütze-2]. However, in reality the oxide scale 

thickness will not be absolutely identical over the whole specimen. The stress generated in the 

metallic substrate will thus represent a stress state, which is non-homogeneous over the 

specimen thickness. This may result in a bending of the metallic substrate, as was, 

macroscopically observed of the thinnest specimen of 0.1 mm (compare figures 6.5, 6.6 and 

6.7). The specimen bending will likely result in scale cracking leading to enhanced access of 

oxygen to the metal surface and thus to an increased oxidation rate. 

An additional factor might be that during thermal cycling, relaxation of thermally induced 

stresses during cooling may, after re-heating to the oxidation temperature, lead to tensile 

cracking of the scale [Evans-1] resulting in paths for access of molecular oxygen and thus 

enhanced scale growth rates. The process is schematically shown in figure 6.34.  
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Figure 6.34: Schematic diagram of the stress formation during cooling of the specimen 
leading to a tensile cracking [Evans-2] 

Figure 6.35 shows a typical example of such a behaviour for steel JS-3 oxidised for 1000 h at 

900°C in air, showing deformation points and their influence on the formation of a double-

layered oxide scale (inhomogeneity in Cr/Mn spinel thickness). 

Figure 6.35: Oxide scale morphology (SEM images) of steel JS-3 after 1000 h cyclic 
oxidation at 900°C in air (specimen thickness: 1.2 mm)  
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Elongation effect 

Investigation of specimens with a different initial thickness could lead to thinnest components 

increasing in length during oxidation as a result of oxide growth stresses. In such a case the 

area of the specimen before the oxidation would be different from that after high temperature 

exposure. This would finally change the specimen area used for weight change calculations 

showing higher weight changes because of smaller specimen areas used for calculations. 

Therefore, the dimensions of the selected specimens were investigated before and after 

oxidation tests. For the thinnest specimens this was sometimes not possible because of 

bending of the sample during oxidation. As a result a slight increase of specimens dimensions 

was found especially in the 900°C exposures (Table 6.2), however this effect is not strong 

enough the explain the kp-dependence on the specimen thickness. Besides, the numerous 

metallographic cross-sections (see e.g. Figure 6.9) revealed that higher weight change are 

indeed mainly related to thicker oxide scale rather than larger effective specimens surface 

areas.

Material
Specimen 
thickness 

[mm] 

Oxidation 
time 
[h]

Length of specimen  
before oxidation 

[mm] 

Length of specimen 
after oxidation 

[mm] 

Crofer A (JMB1) 0.1 250 19.28 1) 

Crofer A (JMC1) 0.3 1000 19.52 20.71 

Crofer A (JMD1) 0.5 1000 20.10 21.08 

1) Strong deformation – measurement impossible 
Table 6.2: Elongation of Crofer A specimens after cyclic oxidation at 900°C in air 

Thermal cycling effect 

For the long term-oxidation studies in most cases cyclic or discontinuous oxidation tests were 

performed. Therefore, the change in oxidation rate with changing specimen thickness could 

also be related to the “cycling effect”. To prove this hypothesis cyclic as well as isothermal 

oxidation was performed for 100 h oxidation test at 900°C. Thick and thin specimens were 

used and for minimising external effects the same furnace was used for both types of 

experiments. Figure 6.36 shows weight changes for three different steels (JS-3, Crofer A and 

model steel HCE) after 100 h oxidation at 900°C in air in cyclic and isothermal oxidation 

conditions. The results clearly show that for thin as well as thick specimens there is almost no 

difference between these two kinds of exposures. The oxidation rate dependence on specimen 

thickness occurs in both studied cases (cyclic exposures – isothermal exposures).  
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Figure 6.36: Weight change after 100 h oxidation of various steels at 900°C in air 
(components with different initial thicknesses, cyclic and isothermal oxidation) 

Also the oxide scale morphology analysed after the oxidation tests (figure 6.37) show a large 

difference in the oxide scale thickness between thick and thin components but a similar 

morphology of the oxide scale for different oxidising atmospheres for the same specimen 

thickness. This finding leads to the conclusion that at least in the earlier stages of oxidation 

(e.g. < 100 h at 900°C) the “cycling effect” is not responsible for the kp dependence on 

specimen thickness.   
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 a)  b) 

c)  d) 
Figure 6.37: Oxide scale morphology (SEM cross fracture) of steel JS-3 (batch: JEW) after 
100 h oxidation at 900°C in air; a) – 2 mm thickness (cyclic), b) – 2 mm thickness 
(isothermal), c) – 0.3 mm thickness (cyclic), d) – 0.3 mm thickness (isothermal) 

Effect of water vapour during the air oxidation 

Extensive oxidation studies performed in laboratory air show a strong thickness dependence 

on the oxidation rate. However, similar studies in the controlled atmosphere of dry synthetic 

air show far lower changes in the oxidation rate for different component thicknesses. 

Therefore, to fully understand this effect a number of experiments for specimens with 

different initial thicknesses were performed in controlled atmospheres of dry and wet air. For 

thin components, as opposed to the thick samples discussed in paragraph 5.3.4, there was a 

real difference in oxidation rate between the different oxidising atmospheres. The results 

presented in figure 6.38 show weight change data for the specimens with different component 

thicknesses in various controlled atmospheres. Analogous to the results presented in the 

literature [Otsuka-1, Fujikawa-1, Garcia-1, Pint-1] it was concluded that the addition of water 

vapour enhanced the oxidation rate of high-Cr ferritic steels. This effect is more pronounced 

for thin specimens when oxidised during a relatively short times of 100 h. Figure 6.39 

presents differences in oxide scale morphology and thickness for samples of Crofer A with an 

initial thickness of 0.1 mm after 100 h oxidation in various atmospheres. This results show a 
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clear difference between thicknesses of the chromia scale for different oxidising atmospheres. 

Figure 6.40 shows Cr depletion profiles for the specimens presented in figures 6.38 and 6.39, 

which show that in the wet air atmosphere the depletion of chromium is much faster than in 

dry air for thin components.       

Figure 6.38: Mass change during isothermal oxidation of steel Crofer A at 900°C in various 
atmospheres for specimens with different initial component thicknesses (wet air: synthetic air 
+ 7 % H2O). 

a) b)
Figure 6.39: Oxide scale morphology (SEM images) of steel Crofer A after 100 h isothermal 
oxidation (TG) at 900°C in air (specimen thickness: 0.1 mm); a) – dry air (synthetic air), b) – wet 
air (synthetic air + 7 % H2O) 
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Figure 6.40: Measured Cr depletion profiles for specimens of Crofer A (specimen thickness: 
0.1 mm) after 100 hours of isothermal oxidation at 900°C in various atmospheres (wet air – 
synthetic air with 7 % H2O). 

Effect of steel microstructure 

The growth rate of the chromia scale could also be related to the microstructure of the steel. It 

is, for instance, well established that the transition to selective oxidation of chromium takes 

place at lower chromium contents for cold-worked alloys and for alloys with a small grain 

size. It is generally concluded that this is due to the more rapid diffusion of chromium along 

grain boundaries and short-circuit paths in the alloy [Kofstad-1]. 
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a) c) 

b) d) 
Figure 6.41: Microstructure of Steel Crofer B „as received“ and after 1000 h discontinues 
oxidation at 800°C in air; a) - thin specimen as received (0.2 mm JZN), b) - thin specimen after 
1000 h oxidation at 800°C in air (0.2 mm JZN), c) - thick specimen as received (~ 3 mm JZF), d) - 
thick specimen after 1000 h oxidation at 800°C in air (2 mm JZF)

Figure 6.41 shows microstructures of steel Crofer B for plates with different initial 

thicknesses analysed “as received” and after 1000 h oxidation at 800°C. It is clearly visible 

that the 0.2 mm delivered plate (6.41 a) has a different microstructure from that with ~ 3 mm 

thickness (6.41 c). In both cases the materials were cold rolled and heat treated, resulting in a 

small and homogenous grain size for the components (6.41 a). However, thick components 

show insufficient metallurgical treatment showing in-homogeneity in the grain size (larger 

grains in the inner parts of the steel (6.41 c)). Smaller grain sizes for thin components may 

cause more rapid chromium diffusion via grain boundaries compared to thick components. 

However, it is necessary to take into account that the material re-crystallized during the 

oxidation process, so in the final stage of oxidation the grain size of the thin components is 

even larger than that for the thick one (figure 6.41 b and d).

As described in section 4.2 in most studied cases only one, thick plate of the material was 

available so the thin components were prepared by grinding the thick specimens to the 

required levels. In such cases there is no difference in grain size exists for the different 
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specimens before oxidation because the specimens were prepared from the same initial plate. 

However, in such a case the thickness dependence of kp was also observed (see e.g. section 

6.1.2), thus the microstructure effect can not be the main explanation for the kp-dependence

on the specimen thickness.  

Surface preparation 

The data presented in the literature [Kofstad-1] clearly shows that surface preparation of the 

specimens may have an influence on oxidation. It is frequently concluded that polished 

specimens oxidised faster than ground ones. In the present studies all thick specimens were 

ground to 1200 grit surface finish using SiC grinding paper. For the delivered thin 

components the surface were left “as delivered” to keep the specimen thickness at the 

required level. The surface of the delivered plates seemed to be a bit smoother than those 

prepared in laboratory, however it was found that this effect could not be the main 

explanation for the kp-dependence on the specimen thickness. This is especially obvious, 

when specimens of different thicknesses were prepared for one and the same plate. In that 

case all specimens experienced the same surface treatment and yet the thickness dependence 

of kp was found.
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6.1.4 Summary of specimen thickness effect during cyclic oxidation

Figures 6.42 and 6.43 summarise cyclic oxidation results for the studied steels taking 

thickness dependence into account. The results show, that the thickness dependence of the 

oxidation rate is for “shorter” oxidation times in fact quite similar for all studied steels, with 

exception of the high-Mn alloy HCH, which poses an “intrinsic” high growth rate. “Shorter” 

means in this context approximately 1000 h at 800°C and ~ 100 h at 900°C (figures 6.42 and 

6.43 a). Major difference occurs after longer times of cyclic oxidation, especially at 900°C 

(figure 6.43 b). Then, enhanced oxidation as a result of cyclic induced oxide cracking become 

dominating. The tensile cracking (see section 6.1.3) becomes more pronounced in case of 

weak (i.e. thin) specimens and alloys. This has as a result, that thin specimens of the alloys 

with low amount of minor impurities (such as JS-3 and Crofer B) show a strong enhancement 

of the oxidation rate after long term cyclic oxidation, because of their lower creep strength 

compared to e.g. Crofer A (figure 6.43 b).     

Figure 6.42: Summarised cyclic oxidation results for different steel as function of specimen 
thicknesses after 1008 h oxidation at 800°C in air. 
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Figure 6.43: Summarised cyclic oxidation results for different steel as function of specimen 
thicknesses after oxidation at 900°C in air; a) 72 h, b) 1008 h 

6.2 Mechanism of breakaway oxidation 

The occurrence of the breakaway phenomenon strictly depends on the amount of chromium 

depleted at the scale/steel interface ( C ) during the oxidation process (Figure 6.44): 
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where: D is the diffusion coefficient of the scale forming element (Cr) in the alloy and kp is 

the parabolic oxidation rate constant in cm2s-1 [Kofstad-1].  

If the ratio 
D
k p  is small, the depletion profile of chromium will be flat as schematically shown 

in figure 6.44a [Quadakkers-9]. In such a case breakaway oxidation will occur when the 

chromium concentration will drop beneath a critical level in the whole specimen volume 

(breakaway type 1).  

When a ratio
D
k p  is large, a steep slope in the depletion profile beneath the oxide scale will 

develop [Quadakkers-9, England-1] as is schematically shown in figure 6.44b. In such a case 

the steel is only heavily depleted in chromium beneath the scale/alloy interface, which can 

lead to the formation of the fast growing oxide, in spite of the fact that the total amount of 

chromium in the steel is still higher than the critical chromium content for occurrence of 

breakaway oxidation (breakaway type 2). 

Figure 6.44: Schematic illustration of different type of Cr depletion profiles leading to 
breakaway oxidation: a) type 1 (kp/D small), b) type 2 (kp/D large) 
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A good example of both discussed behaviours can be found in figure 6.40. In the case of the 

dry air specimens the depletion profile of chromium is much flatter than in the specimen 

exposed to air + 7 % H2O. The specimen exposed to air could finally lead to the breakaway 

phenomenon type 1 and to the breakaway phenomenon type 2 for the specimen exposed to air 

+ 7 % H2O.

It was found that for most studied cases breakaway type 1 occurs i.e. the slopes of the Cr-

profiles are quite small and consequently can, with reasonable accuracy, be described as being 

flat (compare figure 6.52).  

To get a more detailed insight into the effect of the catastrophic breakaway attack, the 

specimen was further exposed up to a final oxidation time of 900 h after visually observed 

breakaway. Figure 6.45 shows the weight change of a Crofer B sample (thickness: 0.2 mm) 

during breakaway oxidation at 900°C in air. The macroscopic image presented in figure 6.45 

shows an advanced stage of catastrophic attack after oxidation.

Figure 6.45: Mass change during cyclic oxidation of steel Crofer B at 900°C in air (JZN 4, 
specimen thickness 0.2 mm, breakaway). 

Metallographic cross-sections (SEM images) presented in figure 6.46 show different stages of 

breakaway oxidation in various areas of the investigated specimens. A classic protective 

chromia scale is presented in picture 6.46 I, however in several specimen regions a large crack 

through the oxide scale was observed (6.46 II). It was also found in several places that iron 

oxide started to form in the area of the crack (6.46 III, IV). In the final stage (6.46 V) iron 

oxide grows inward and outward resulted in complete oxidation of the specimen.        
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Figure 6.46: Metallographic cross-sections 
(SEM images) of steel Crofer B after 900 h 
oxidation at 900°C in air (specimen thickness 
0.2 mm) 

Detailed investigations of the area presented in figure 6.46 IV show that in the early stages of 

iron oxide formation chromium started to oxidise in the form of stringers embedded in the 

matrix of the steel (figure 6.47). Furthermore, a gap between the steel and the oxide was 

observed in the first stage of the catastrophic attack.
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Cr

Fe

Figure 6.47: SEM element mapping of steel 
Crofer B after 900 h oxidation at 900°C in air 
(specimen thickness 0.2 mm) 

Summarizing the results presented above, the mechanism of breakaway oxidation is proposed 

and schematically shown in figure 6.48. Dense at the beginning of oxidation oxide scale (6.48 

a) is cracked due to oxide growth and/or thermally induced stresses. In the first oxidation 

stage the Mn and Cr reservoirs are high enough to re-heal the mentioned cracks (6.48 b). 

However, when the Cr (and also Mn) concentration reaches a level at which no more 

protective Cr-rich oxide can be formed, iron oxide starts to grow through the oxide scale 

cracks (6.48 c). In the later stages of catastrophic attack, the remaining chromium in the alloy 

oxidises in the form of stringers embedded in the material matrix and a large gap between 

steel and oxide scale formed (6.48 d). In the final stages of the breakaway oxidation, the 

whole specimen area is oxidised, however it is still possible to detect the Cr-rich oxide scale 

formed prior to breakaway oxidation. 

Based on the considerations presented above it is possible to conclude that breakaway 

oxidation in such a case is caused more due to a mechanical mechanisms (crack formation) 

rather than due to a “chemical” one. However, it is necessary to take into account that the first 

reason for catastrophic attack is depletion of Cr and crack formation only accelerates the 

occurrence of breakaway oxidation. 
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Figure 6.48: Proposed mechanism of 
breakaway oxidation for high chromium 
ferritic steels for thin components

The mechanism presented above is mainly valid for thin components where a thick oxide 

scales and the occurrence of stresses lead to crack formation. In case of thick components 

especially at lower temperatures (800°C) the chemical mechanism of the breakaway oxidation 

is expected rather than the mechanical one because the thinner oxide is less susceptible to 

crack formation during high temperature exposure.     

Analysing chromium depletion profiles of the thinnest components it was found in several 

cases that after occurrence of breakaway oxidation the profile became more flat than in 

specimens after shorter oxidation times. Figure 6.49 shows chromium depletion profiles after 

different times of isothermal oxidation for specimens of Crofer A with 0.1 mm initial 

thickness. The relatively steep Cr depletion profile after 50 h of oxidation become flat when 

analysing specimens after 200 h and 250 h of oxidation, i.e. after occurrence of breakaway. 

The explanation of this fact could be that when breakaway oxidation occurs Fe becomes more 
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rapidly oxidized than Cr resulting in equalization of the Cr concentration in the whole 

specimen volume.           

Figure 6.49: Measured Cr depletion profiles for specimens of steel Crofer A (batch JMB) 
during isothermal oxidation at 900°C in air. 

It was found that during an oxidation of different samples from the same batch (repeated 

exposures for checking reproducibility) relatively high discrepancies in the weight change 

data were observed during prolonged exposures whereas in the earlier stages of oxidation the 

results show excellent reproducibility. A typical examples of such a behaviour are presented 

in figure 6.50. After about 400 h of exposure the weight change data starts to vary for 

different specimens. Taking into account the mechanism presented in figure 6.50, crack 

formation is a dominant process in such a case during prolonged exposure times. The crack 

formation is a statistical process, which depends on stress distribution, and therefore it is easy 

to understand that for different samples different weight changes are being observed. As the 

weight change is a direct measured for the consumption of scale forming elements, the data 

scatter after prolonged oxidation implies, that in determining occurrence of breakaway 

oxidation a “natural scatter” of the data points has to be taken into account.
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Figure 6.50: Mass change during cyclic oxidation of a 0.3 mm thick specimen (JMC) of 
Crofer A at 900°C in air showing scatter of oxidation rates after prolonged oxidation. 

6.3 Lifetime prediction of chromia forming ferritic steels 

As shown in paragraphs 5.1 and 6.1 depletion of chromium for Cr-rich ferritic steels leads in 

many cases to a breakaway oxidation phenomenon, which represents the lifetime limit of the 

mentioned steels. It is now proposed that the oxidation-limited life for chromia forming 

ferritic steels in the temperature range 800-900°C could be predicted by a similar approaches 

as those previously used for FeCrAl alloys (compare section 3.4.1) [Huczkowski-1, 2]. 

Therefore equations used in references [Quadakkers-8, 9, Gurrappa-1, Nicholls-1] were 

adjusted in such a way that they can be used for the investigated chromia forming ferritic 

steels.

In the model a flat specimen of thickness d  (in cm ) and infinite length and width was 

considered [Quadakkers-9]. The oxygen uptake (in 2cmmg ) by the specimen surface A  due 

to oxide scale growth is given by [Quadakkers 9, Gurrappa-1]: 
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in which t  is the oxidation time in hours, k  the oxidation rate constant and n  the oxidation 

rate exponent [Gurrappa-1]. 

Assuming that the surface oxide consists completely of Cr2O3 (i.e. the Cr/O weight ratio is 

equal to 2.168), the amount of chromium 
A
Crm )(  (in 2cmmg ) in the scale is given by: 

ntk
A
Crm 168.2)(       (6.4) 

The total amount of chromium oxCrm )(  (in 2cmmg ) in the oxide scale on the surface of 

the specimen of infinite size is: 

nox tkACrm 168.2)(       (6.5) 

Considering the volume of the specimen to be dA
2
1  (in 3cm ) the total amount of chromium 

(in mg ) depleted from the alloy due to oxide formation after a certain time t  is: 

dA
CC

Crm tdepl

2
1

100
)( 0      (6.6) 

in which  is the alloy density in 3cmmg , 0C  the initial alloy Cr content in wt-% and tC

the remaining Cr content at time t . As the amount of Cr depleted from the alloy will be equal 

to that tied up in the oxide, i.e. after a certain oxidation time, the following equation will be 

valid: 

dA
CC

tkA tn

2
1

100
168.2 0      (6.7) 

Re-arranging the equation reveals the time, which is required to deplete the initial chromium 

content 0C  to a certain, i.e. lower chromium content in the alloy matrix after time t . If we 

define BC  as the critical Cr content at which breakaway oxidation starts, the time for the 

occurrence of this event is given by: 
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n

BB k
dCCt

1

0
3 )(103.2      (6.8) 

In the case of a rectangular specimen of length L , width b  and thickness d  (all values in 

cm ) equation (6.8) will changes to: 

n

BB bdLdk
dCCt

1

0
3

)//1(
)(103.2    (6.9) 

in which the specimen thickness d  in equation 6.8 is replaced by the factor:  

)//1( bdLd
d        (6.10) 

when considering the total surface area and volume of the specimen. It is of course also 

possible to make a similar calculation for different specimen shapes taking the correct volume 

to surface ratios of various types of specimen geometries such a bars or wires into account 

[Gurrappa-1, Nichols-1].

In the case of alloys which are prone to oxide spallation equation 6.8 can be changed in such a 

way that the spalling process is also taken into account. Assuming that this spallation starts 

after the oxide thickness reaches a critical thickness *x , corresponding to a critical weight 

change *m , the following expression was derived in reference [Quadakkers-9] for the time 

to breakaway for a flat specimen of infinite size (compare equation 6.8): 

11
*

1

0
3 )()()(103.2 nn

BB mkdCCt    (6.11)

It is necessary to take into account that for Crofer 22 APU type steels a double-layered oxide 

scales are usually formed. It is therefore necessary to assume that this information when 

calculating ratioOCr }/{  for the oxide scale formed. In such a case it is better to modify the 

equation 6.9 obtaining: 
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The boundary conditions for the ratioOCr }/{  in such a case are 2.168 if only Cr2O3 is formed 

and 1.626 if only Cr2MnO4 exists on the specimen surface. However, in most cases the value 

is between these two boundary values because both oxides are usually observed on the 

specimen surface. However, it is not easy to find an exact value of spinel thickness because it 

could be different for the different specimen thickness because of Mn depletion during the 

oxidation process (section 6.1.3). Therefore in most studied cases the value of ratioOCr }/{  was 

taken as for pure chromia scale (2.168), which could affect the calculation in such a way that 

the lifetime is slightly shorter than for the calculation where a spinel layer would be taken into 

account. From the practical point of view it is however better to underestimate the lifetime of 

the alloy to avoid overestimation (calculation of the longer lifetimes than experimental ones). 

The approaches used in references [Quadakkers-8, 9, Gurrappa-1, Nicholls-1] to predict the 

time for the onset of breakaway can only be used if the depletion profiles of the scale forming 

elements in the alloy, here mainly Cr, are nearly ideally flat. Whether this is actually the case, 

will depend on the diffusion coefficient (D) of the scale forming element in the alloy and the 

growth rate of the oxide. Assuming classic parabolic oxidation, the scale thickness (x) and 

oxidation time (t) are related by: 

tkx p
2         (6.13) 

in which kp is the parabolic oxidation rate constant. It is easy to derive from classical 

oxidation theory that the slope of the depletion profile in the alloy beneath the oxide layer 

depends on the ratio kp / D [Kofstad-1]. If the ratio is large, as is the case in most chromia 

forming Ni - base alloys [England-1] and austenitic steels [Schütze-1] but also for ferritic 

steels at intermediate temperatures [Vossen-1], a steep slope of the depletion profile beneath 

the oxide scale will develop [Quadakkers-9, England-1]. If the ratio kp / D is very small, the 

depletion profile is nearly ideally flat, as is generally the case in FeCrAl alloys when oxidized 

in the temperature range of approximately 1000–1300°C [Quadakkers-9]. 

Figure 6.51 shows mass change data of one of the studied ferritic steels (Crofer A) during 

oxidation at 800°C. The results show that the oxidation behaviour can in most studied cases, 

with reasonable accuracy, be described by a parabolic time dependence of the scaling rate. 

However, it is necessary to take into account that for exposures with observed scale tensile 

cracking (compare figure 6.50) it is difficult to derive a reliable time dependence of the 
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scaling rate. Figure 6.52 presents measured Cr depletion profiles after various oxidation times 

for specimens of different initial thickness. The data shows, that the slopes of the Cr-profiles 

are quite small and consequently can, with reasonable accuracy, be described as being flat, as 

required for the modelling approach used in references [Quadakkers-8, 9, Gurrappa-1, 

Nicholls-1] for alumina forming ferritic steels.  

Cr depletion profiles measured for the studies materials can be found in figures 10.1 – 10.12 

in the Appendix. 

Figure 6.51: Mass change during cyclic oxidation of a 0.5 mm thick specimen (JMD 1) of 
Crofer A at 800°C in air showing a parabolic fit (eq. 6.13) of the experimental data. 
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Figure 6.52: Measured Cr depletion profiles for specimens of Crofer A with different initial 
thickness after cyclic oxidation at 900°C in air. 

Figure 6.53 shows a calculated lifetime diagram for Crofer A as a typical example of the 

lifetime calculation for chromia forming ferritic steels. The parameters used for the 

calculations are listed in the figure captions. Dashed lines (constant kp values) were calculated 

taking into account kinetic data for thick specimens only (i.e. 2 mm). In the case of the solid 

lines show the thickness dependence of kp is taken into account (compare figures 6.1 to 6.4). 

Based on EDX analyses, the Cr content at which breakaway occurs (figure 6.52) was near to 

16 %. It is also in agreement with results for “low-Cr” steels (~ 16 wt. %). For such materials 

breakaway oxidation occurred at the first stage of oxidation if the temperature is high enough 

(900°C) even for thick (2 mm) specimens (compare section 5.1). Comparison of the 

calculated data with the available measured breakaway results (Figure 6.2) shows that by this 

approach the experimentally determined lifetimes during 900°C oxidation can be predicted 

with reasonable accuracy if the specimen thickness variation of kp is taken into account. 
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Figure 6.53: Calculated lifetimes for steel Crofer A at 800 and 900°C in air assuming a CB
value for Cr of 16 wt. % at both temperatures. 

kp-values used for the calculation of the life times for specimens with a various initial 
thickness [g2cm-4s-1]: 

800°C: kp (2 mm)   = 6.49·10-14

            kp (0.5 mm) = 1.05·10-13

            kp (0.3 mm) = 1.12·10-13 

            kp (0.1 mm) = 2.21·10-13

900°C: kp (2 mm)   = 1.00·10-12

            kp (0.5 mm) = 1.79·10-12

            kp (0.3 mm) = 2.49·10-12 

            kp (0.1 mm) = 5.67·10-12

Figures 6.54 and 6.55 show calculated lifetimes for various studied steels at 800°C and 900°C 

in air taking the thickness dependence of kp into account and assuming a CB value for Cr of 16 

wt. %. At 800°C (figure 6.54) it is clearly visible that the model steel HCE shows the highest 

oxidation resistance and thus the longest lifetime. In case of steel HCH the decrease in 

lifetime of the thinner specimens is not as large as for the other steels. It is connected with the 

lower Mn depletion in the high-Mn HCH steel and thus hardly any thickness dependence was 

found for this steel (compare figure 6.29).   
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In the case of the 900°C calculation (figure 6.55) it was found that several steels, which for 

the thick components show high oxidation resistance (i.e. steel HCE and JS-3), they show 

rapid reduction of the lifetime for the thinnest components. This effect is caused by oxide 

growth and/or thermally induced stresses leading especially for thin specimens of weaker 

alloys to tensile cracking of the scale resulting in the creation of paths for access of molecular 

oxygen and thus enhanced scale growth rates (compare section 6.1.3). The effect is more 

pronounced for higher temperatures, i.e. 900°C, than for 800°C.

Presently available experimental breakaway data (marked with dots) show that the approach 

used for the experimentally determined lifetimes during 900°C oxidation can be used with 

reasonable accuracy for the studied ferritic steels if breakaway type 1 occurs (compare section 

6.2). In case of breakaway type 2 it is possible to observe catastrophic oxidation faster than 

predicted. This is probably the case for the 0.6 mm specimen of the FeCrLa steel (batch 

HCE). It was found that the experimental depletion profile for this specimen showed a strong 

deviation from an ideal flat profile in contrary to a specimen from the same batch but with a 

thickness of 0.3 mm (figure 6.56).  

At 800°C the experimentally determined lifetimes are not easy to obtain because of long 

oxidation times required. It is thus difficult to estimate, whether the assumptions made for 

900°C are transferable to 800°C. Especially uncertain seems to be, whether the CB-value

derived at 900°C is transferable to lower temperatures. 
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Figure 6.54: Calculated lifetimes for various studied steels at 800°C in air taking thickness 
dependence of kp into account and assuming a CB value for Cr of 16 wt. %. 
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Figure 6.55: Calculated lifetimes for various studied steels at 900°C in air taking thickness 
dependence of kp into account and assuming a CB value for Cr of 16 wt. %. Dots indicate 
experimental breakaway points measured for studied materials.   
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Figure 6.56: Measured Cr depletion profiles for specimens of model steel FeCrLa (batch 
HCE) with different initial thickness after cyclic oxidation at 900°C in air. 

6.4 Summary of studies on oxidation limited life times 

It is necessary to take into account that the lifetime of thin steel components (i.e. 0.1 mm) 

used as interconnectors for SOFC will be more shorter than the lifetime of thick components 

(i.e. 2.0 mm) of the same material because of the smaller reservoir of scale forming elements 

in thin components.  

Besides, it has to be taken into account that, the oxidation rate kp obtained for most of the 

studied materials increases with decreasing specimen thickness – thinner components of the 

same steel oxidise faster than thicker ones.  

The kp-dependence on specimen thickness is related to: 

Depletion of minor alloying elements (mainly Mn) – Mn suppresses the chromia 

growth for thick components by Cr/Mn-spinel formation. During oxidation of thin 

components (i.e. 0.1 mm) at 900°C the reservoir of Mn is insufficient to form a spinel 

phase even after relatively short oxidation times.  

The oxidation atmosphere, laboratory air, contains trace amounts of water vapour, 
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above) the growth rate of chromia is accelerated by the presence of water vapour in 

the air. 

Oxide growth and thermally induced stresses (in the later stages of oxidation)  – 

during prolonged exposure of thinner components and thermally induced stresses lead 

to tensile cracking of the scale resulting in the creation of paths for access of 

molecular oxygen and thus enhanced scale growth rates 

The breakaway oxidation phenomenon is in most cases caused by a mechanical mechanisms 

(crack formation) rather than only by “chemical” depletion of chromium. However, it is 

necessary to take into account that the first reason for catastrophic attack is depletion of Cr so 

crack formation only accelerates the to beginning of breakaway oxidation. 

The oxidation lifetime for chromia forming ferritic steels in the temperature range 800-900°C 

can be predicted with reasonable accuracy by a similar approach as that previously used for 

FeCrAl alloys, if the mentioned factors affecting the scale growth rate are taken into account. 
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7. Electrical conductivity of the thermally grown, chromium rich oxide 

scales

As introduced in paragraph 3.5 the electrical conductivity of the interconnect is a crucial 

property for SOFC application whereby the conductivity of the chromium based oxide scale 

which forms during high temperature service has to be taken into account in the overall 

conductivity value. This section presents experimental data concerning the electrical 

conductivity of the surface oxide scales formed in the temperature range 600-800°C on 

selected high-chromium ferritic steels. The data will be correlated with oxide scale 

morphologies and compared with those obtained for two “pure chromia” forming materials.  

Figure 7.1 shows weight change data for the studied materials after 1000 h of discontinuous 

exposure at 800°C in air. The oxide scales on the two ferritic steels and the Cr-base ODS 

alloy exhibited excellent adherence to the metallic substrate and no indications for scale 

spalling were found. On the contrary, the Cr-sample exhibited substantial scale spalling as 

confirmed by the metallographic cross-section in figure 7.2. Consequently, the specimen 

(“net”) weight change after 1000 h was substantially smaller than the total (“gross”) weight 

change corresponding to the oxide adhering to the substrate plus the spalled oxide (figure 

7.1). A much smaller growth rate and far better scale adherence were found for the Cr-ODS-

alloy, although, also for this materials scale damage as void formation was clearly found 

(figure 7.2). 
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Figure 7.1: Weight change of the studied materials after 1000 h oxidation at 800°C in air. The 
measured weight change of the Cr specimen was affected by oxide spallation. The figure 
therefore shows a total (gross) weight change (including spalled oxide) and the specimen (net) 
weight change. 

The latter effect was not observed in the scales on the two ferritic steels (figure 7.2) as already 

described in the previous sections. Both steels formed dense, compact oxide layers and the 

scale on steel JS-3 was, in agreement with the weight change data, only marginally thicker 

than that on the Cr-base ODS alloy. Both Cr-base materials exhibited sub-scale nitride 

formation, the effect being especially pronounced in case of the “pure-Cr”. Nitride formation 

was not observed in the two ferritic steels, which is, however, no proof that no nitrogen 

uptake occurred. Because the steels possess a much higher N-solubility than the Cr based 

materials, N-uptake may have occurred without the formation of metallographically visible 

nitride precipitates.  
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Figure 7.2: Metallographic cross-sections (SEM images) of the studied materials after 1000 h 
oxidation at 800°C in air.
a) Steel JS-3 [Piron-2] 
b) Steel Crofer A [Piron-2] 
c) Cr (99.96 %) 
d) Cr-ODS alloy (Cr-5Fe-1Y2O3)

Figure 7.3 shows the temperature dependence of the electrical conductivity of the oxide scales 

on the studied materials compared with literature data for Cr2O3 [Holt-1, 2, Nagai-1] and 

recent results for Cr2MnO4 [Sakai-1]. To be able to compare the measured resistance results 

with the data published in literature for bulk oxides, the contact resistances (compare figure 

3.17) were transferred into conductivity values thereby taking the metallographically 

measured oxide thicknesses into account. Strictly speaking, the surface scales formed on the 

various materials cannot be characterized by such a conductivity value, because the scales do 

not consist of a single oxide phase; they contain impurities and they grow in an oxygen partial 

pressure gradient. In figure 7.3 the estimated value is therefore termed “apparent 

conductivity”.

The conductivity data measured on at least two specimens of all studied materials showed 

excellent reproducibility for the two ferritic steels and the Cr-ODS-alloy, however substantial 

scatter was observed in case of the “pure-Cr”. Although during the 100 h pre-oxidation this 

material did not exhibit scale spallation, the metallographic cross section after 1000 h (figure 
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7.2) indicates, that already after relatively short oxidation times of a few hundred hours, 

significant scale damage due to pore and crack formation will prevail. These voids and gaps 

will substantially affect the conductivity measurements. The non-even distribution of the scale 

damage therefore explains the scatter in data obtained for the two “pure Cr” specimens.    

Figure 7.3: “Apparent electrical conductivity” ( ) of oxide scales, plotted as T vs. reciprocal 
temperature, for investigated materials compared with literature data for Cr2O3 (Holt et al. 
[Holt-1, 2], Nagai et al. [Nagai-1]) and Cr2MnO4 (Sakai et al. [Sakai-1]). 

The results in figure 7.3 clearly show higher conductivities for the oxides on the two ferritic 

steels than for those on the Cr-base materials. This is likely related to the in-scale voidage of 

the scales on the Cr-base materials in combination with a doping of the Cr2O3 scales formed 

on the two steel variants, e.g. by Ti and/or Fe and by the presence of the Cr/Mn-spinel phase 

[Huczkowski-3]. The minor additions of Si and Al in steel Crofer A apparently do not 

substantially affect the scale conductivity. Although the measured “apparent conductivities” 

can, for the reasons mentioned above, not in a straightforward way be compared with absolute 

values determined from bulk oxides, it is interesting to note, that the measured data are in a 

range, previously reported for bulk chromia by Holt at al. [Holt-1, 2] and Nagai at al. [Nagai-

1] and recently for Cr2MnO4 by Sakai at al. [Sakai-1]. The latter authors observed a strong 

dependence of the spinel conductivity on Fe-additions. 
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7.1 Prediction of the electrical conductivity of thermally grown chromia

If for a certain steel an electrical conductivity of the oxide scale and oxidation kinetics are 

known in a certain temperature range it is possible to predict the electrical properties for a 

particular temperature. 

 As it was already mentioned in the literature review, equation 3.25 can be presented as 

follows: 

xASR          (7.1) 

where: ASR is the area specific contact resistance of the oxide scale,  is the resistivity and 

x is the thickness of the oxide scale. 

The resistivity ( ) can be calculated from the formula: 

RT
E

fT elaexp         (7.2)  

taking into account that: 

1           (7.3) 

where  is the electrical conductivity. 

Re-arranging equation 7.2 yields for the resistivity: 

RT
E

f
T elaexp1        (7.4) 

where f  is a pre-exponential constant, elaE is the activation energy, R is the universal gas 

constant, and T the temperature.  
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The thickness of the oxide scale ( x ) can be calculated using equation: 

tkx p
2         (7.5) 

where pk is the oxidation rate constant (in 12scm )  and t  is the oxidation time, knowing that: 

RT
E

kk oxao
pp exp        (7.6) 

where o
pk  is a pre-exponential constant, oxaE is the activation energy for oxidation, R is the 

universal gas constant, and T the temperature. 

Comparing equation 7.5 and 7.6 the oxide scale thickness is given by: 

RT
E

tkx oxao
p 2

exp2
1

2
1

      (7.7) 

Finally it is possible to replace and x  in the equation 7.1 by formulas given in equations 

7.4 and 7.7: 

f
Tk

RT
EE

tASR o
p

aa elox 1
2

2
exp 2

1
2
1

   (7.8) 

The factors 
elaE , f ,

oxaE  and o
pk  can be calculated from equations 7.2 (electrical 

conductivity) and 7.6 (oxidation kinetics) using the slopes of the reciprocal curves: 

Tln  vs. T/1  for electrical conductivity 

pkln  vs. T/1  for oxidation kinetics 

Figure 7.4 shows the predicted behaviour of the contact resistance for the steel Crofer A for 

various temperatures using conductivity and kinetics data from table 7.1 and parameters 

derived from equation 7.2 and 7.6 presented in table 7.2. The calculated curves show that the 

contact resistance increases with increasing temperature so the electrical conductivity after the 

same oxidation time will be higher if the steels is oxidised at lower temperatures. That means 
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that the reduction of the fuel cell temperature should be beneficial from the viewpoint of 

electrical conductivity of the formed surface oxide scale. This conclusion is of course only 

valid, if the oxidation mechanisms do not change in the temperature range 600 – 900°C.  

Figure 7.4: Calculated contact resistance of the thermally grown oxide scale on steel Crofer A 
for a various temperatures using equation 7.8 

Temperature Oxidation kinetics 
kp [cm2/h] 

Conductivity
[S/cm] 

900°C 1.27·10-9 -
800°C 7.43·10-11 0.043
750°C - 0.035 
700°C 1.08·10-11 0.026
650°C - 0.017 
600°C - 0.011 

Table 7.1: Kinetics and electrical conductivity data used for the calculation in figure 7.4 

Ea ox [J/mol] 224187 
kp

o [cm2/h] 9.56 
Ea el [J/mol] 63000 
f [SK/cm] 57239.5 

Table 7.2: Parameters derived from equation 7.2 and 7.6 used for the calculation presented in 
figure 7.4

7.2 The effect of contact paste on conductivity experiments 

Based on the microstructural investigations after a number of conductivity tests, the question 

arose whether Pt paste can be considered as an inert material during the long term testing. 

Figures 7.5, 7.6 and 7.7 show oxide scale morphologies for specimens oxidised with and 
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without Pt covers. The SEM images show that especially for steel JS-3 there is a clear 

difference in oxide scale morphology between the specimens covered with Pt compared with 

the non-covered specimens. This effect occurred independent of whether an electric voltage 

was applied or not. Therefore a number of conductivity tests with different types of contact 

pastes (Pt, Au) on specimens of JS-3 and Crofer 22 APU were carried out.    

a) b)
Figure 7.5: Oxide scale morphology of steel JS-3 after oxidation at 800°C in air 
a)  1000 h, normal discontinuous oxidation  
b) 1350 h conductivity experiment (total oxidation time including preoxidation of 100 h) 
specimen covered with Pt-paste 

a) b)
Figure 7.6: Oxide scale morphology of steel Crofer A after oxidation at 800°C in air
a) 1000 h, normal discontinuous oxidation 
b) 1350 h conductivity experiment (total oxidation time with preoxidation of 100 h); Specimens 
covered by Pt-paste 
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a) c)

b) d)
Figure 7.7: Oxide scale morphology of steel JS-3 after oxidation at 800°C in air (after 250 h 
preoxidation one side of the specimen covered by Pt paste); a), b) 750 h oxidation (250 h + 500 
h), no Pt paste, c), d) 250 h oxidation + Pt paste cover + 500 h oxidation 

Figure 7.8 clearly exhibits that there is a difference, although not “dramatic”, in contact 

resistances measured on specimens covered with different contacting pastes. Specimens 

covered with the Au paste generally exhibited a higher contact resistance (lower electrical 

conductivity) than those covered with Pt paste. Figure 7.9 shows the oxide scale 

morphologies (metallographic cross-section) of the various samples after the conductivity

tests. Generally the oxide scales on Au covered samples are thicker than those on Pt covered 

samples. This seems to be a likely explanation for the measured slightly higher contact 

resistance. 
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Figure 7.8: Contact resistance as a function of time of semi-commercial steel JS-3 covered with 
different contacting pastes at 800°C in air (test started after 250h pre-oxidation) 

The “thinning” of the scale has as a result, that the conductivity data at the end of the long-

term measurement relates to a relatively thin oxide scales which nearly exclusively consist of 

Cr2O3 because hardly any (Cr,Mn)3O4 remains. Figure 7.10 shows for the Crofer A that, in 

contrary to JS-3, only a minor difference exists between measured contact resistances using 

different contacting pastes. This might be related to the fact that for Crofer A the spinel phase 

is relatively thin (compare paragraph 5.3) and its destruction has only a limited influence on 

the overall conductivity value. 
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a) c) 

b) d)
Figure 7.9: Oxide scale morphologies of JS-3 samples covered with different contacting pastes 
after 500 h electrical conductivity test at 800°C in air. 
a), b) Pt contacting paste (JEW 25), c), d) Au contacting paste (JEW 28) 

As far as known to the author, the “Pt effect” has not been described in the literature. Recent 

studies from Hultquist et al. [Hultquist-1, 2] indicated that the presence of Pt on a growing 

chromium based oxide changes the growth mechanism of the oxide scale, i.e. the presence of 

Pt promotes inward growth. The result from the present study indicates that part of the oxide 

scale reacts with the Pt paste during the high temperature test resulting in thinning of the scale 

during prolonged exposure. The metallographic and SEM investigations indicate that 

especially the spinel phase (Cr,Mn)3O4 is susceptible to reaction with the Pt paste. These 

observations indicate that the Pt effect is not solely related to a change of the transport 

processes in the scale. 
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Figure 7.10: Contact resistance as function of time of steel Crofer A covered with different 
contacting pastes at 800°C in air (test started after 100 h pre-oxidation at 800°C) 

To prove the finding presented in papers [Hultquist-1,2] two stage oxidation studies were 

performed. Figure 7.11 shows SNMS profiles for two specimens of steel JS-3 after two stage 

oxidation with 18O tracer. In the first case (figure 7.11 a) after 5 h oxidation at 800°C in air 

the oxidising gas was changed to Ar-18O2 (20 h oxidation). For the second specimens a 

platinum layer was applied between the two steps of oxidation (compare section 4.5). The 

SNMS profiles for the specimens covered with platinum indicates that some of the Cr and Mn 

are incorporated into the platinum layer, which is also possible to be observed on the images 

in figures 7.5, 7.6, 7.7 and 7.9. Comparing the SNMS profile in figure 7.11 it is also clearly 

visible that the profiles of the oxygen tracer in platinum covered specimen varies from that 

observed on the specimen oxidised without platinum addition. It is probably connected with a 

change of oxide growth mechanism from outward to mixed (outward/inward) scale formation 

mechanisms.     
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Figure 7.11: SNMS profiles of steel JS-3 after isothermal oxidation at 800°C in Ar-O2.
(two-stage oxidation using 18O2 in the second oxidation step)
a) 5 h Ar-16O2, 20 h Ar-18O2
b) 5 h Ar-16O2, Pt-sputtering (compare section 4.5), 20 h Ar-18O2

7.3 Summary of the studies on electrical conductivity of the thermally grown, 

chromium rich oxide scales  

Minor additions of Al and Si tend to increase the growth rate of the Cr-rich oxide scales on 

high-Cr ferritic steels. However, the electrical conductivity of the scales seems to be only 

marginally affected by these minor alloying additions, as long as no compact sub-surface 

layers (e.g. of silica) are formed.  

The conductivities of the scales formed on the studied ferritic steels studied steels in the 

temperature range 600-800°C were higher than that of pure chromia formed on Cr-base 

materials.  
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This effect is probably related to a doping effect of the Cr2O3 scales in the case of Crofer 22 

APU type interconnector steels. 

The electrical conductivity of the Crofer 22 APU type steels seems to be sufficiently high for 

most envisaged SOFC applications.   

Pt paste cannot be considered as an inert material during the long term electrical conductivity

testing. It apparently modifies the morphology of the oxide scale, however no substantial 

change in the growth mechanism of the chromia scale is observed during the early stages of 

oxidation. The latter effect is less pronounced if Au-paste is being used.
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8. Summary and conclusions 

High-Cr ferritic steels seem to be promising candidates for interconnect materials for SOFCs. 

If one considers market available ferritic steels, those especially designed for SOFC show 

better properties at high temperatures than the other commercial materials. Especially the steel 

Crofer 22 APU seems to possess promising properties for SOFC interconnects because of its 

very good oxidation protection and excellent adhesion of the oxide scale to the metallic 

substrate when oxidised in the temperature range 800-900°C. It is however, necessary to point 

out that the exact composition of the steel is extremely important for its behaviour during high 

temperature service. In the case of Crofer 22 type steels (JS-3 / Crofer 22 APU) only a 

theoretically marginal addition of manufacturing related impurities (Si and Al) changes to a 

large extend the oxidation properties of the steel, i.e. they increase the growth rate of the 

chromia because of oxide scale cracking and thus access of oxygen to the metal surface. 

Detailed characterisation of steels JS-3/Crofer 22 APU after different kinds of oxidation tests 

show outward growth of the scale Cr-base scale likely governed by the formation of the 

external Cr/Mn spinel layer if oxidised at 800°C and 900°C in air. The top spinel layer of 

(Cr,Mn)3O4 is known to reduce the formation of volatile Cr species preventing poisoning of 

the cathode and the cathode/electrolyte interface in SOFC’s. 

One of the most important points in the case of ferritic steels for potential use as SOFC 

interconnects is the chromium reservoir in the steel. Ferritic high-Cr steels form chromia 

based scales during high temperature service. If a depletion of scale forming elements (mainly 

Cr) come to a critical level, protective scale formation will no longer be observed, a non 

protective Fe-rich oxide will be formed in the further stages of oxidation (breakaway 

oxidation). Due to the very high oxide growth rates accompanied by this event, the time at 

which breakaway oxidation occurs, represents the lifetime limit of the components. Therefore 

it is necessary to point out that steels with relatively low concentrations of chromium (e.g. 16 

wt. %) are potentially less promising for SOFC use than the higher chromium steels (e.g. 22 

wt. % of Cr).

SOFC market requirements (e.g. in the automotive industry) lead in many cases to the 

demand for a reduction of the fuel cell size and/or weight and thus of the interconnector 

thickness. Similar to the above presented discussion (chromium reservoir) also in the case of 

thin components (i.e. 0.1 mm) even with high chromium concentrations the depletion of the 

scale forming element leads to a fast breakaway phenomenon, and thus to a reduction of the 
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component lifetime if compared with thick plates of the same material (i.e. 2 mm). It is 

important to note that the use of very thin components (i.e. 0.1 mm) for SOFC interconnectors 

can dramatically reduce the lifetime of the SOFC stack due to breakaway oxidation attack on 

the ferritic steel. 

The breakaway oxidation phenomenon is in most cases caused by a mechanical mechanisms 

(crack formation) rather than only by “chemical” depletion of chromium. However, it is 

necessary to take into account that the first reason for catastrophic attack is depletion of Cr so 

the crack formation only accelerates the beginning of breakaway oxidation. 

When oxidising specimens with different initial thicknesses it was found that the oxidation 

rates of the steels increase with decreasing specimen thickness, i.e. thinner components of the 

same steel oxidised faster than thicker ones. This effect is most probably caused by depletion 

of minor allying elements (manly Mn), which suppress the growth of chromia in thick 

components by Cr/Mn-spinel formation. During oxidation of thin components (i.e. 0.1 mm) at 

900°C the reservoir of Mn is insufficient to form a spinel phase even after short oxidation 

times. This effect is accelerated by the presence of water vapour in the air, which additionally 

accelerates the formation of the chromia scale in thin components. Moreover, during 

prolonged exposure times it is necessary to take into account that for thin components growth 

and thermally induced stresses lead to tensile cracking of the scale resulting in the creation of 

paths for access of molecular oxygen and thus enhanced scale growth rates. 

As explained above, for chromia forming ferritic steel components the oxidation-limited 

lifetime is primarily governed by the reservoir of the scale forming alloying elements rather 

than by their absolute concentration in the steel. The observed lifetime limits can be predicted 

with reasonable accuracy by a theoretical model, using oxide growth rate parameters, initial 

alloy Cr contents and critical Cr contents for protective chromia scale formation. Comparison 

of the calculated data with measured breakaway results shows that modelling allows 

prediction of the occurrence of breakaway oxidation with reasonable accuracy if the specimen 

thickness variation of kp is taken into account.

The conductivities of the scales formed on the studied ferritic steels in the temperature range 

600-800°C were higher than that of pure chromia formed on Cr-base materials. This effect is 

likely related to the doping effect of Cr2O3 scales in the case of Crofer 22 type interconnector 
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steels. The electrical conductivity of the scales seems to be only marginally affected by minor 

alloying additions, as long as no compact sub-surface layers (e.g. of silica) are formed.  

Pt paste cannot be considered as an inert material during long term electrical conductivity 

testing. It apparently modifies the morphology of the oxide scale, however no change in the 

growth mechanism of the chromia scale was observed during the early stages of oxidation. 

The on scale formation effect is less pronounced if Au-paste is used.

The electrical conductivities of the Crofer 22 type steels seem to be sufficiently high for most 

envisaged SOFC applications.   
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10. Appendix 

Composition (wt. %) Steel Batch
name Fe Cr Mn Ti La Si Al Ni Y 

JS-3 JEX Bal. 23.3 0.4 0.047 0.089 0.009 0.005 - - 

JS-3 JEW Bal. 22.9 0.4 0.046 0.087 0.01 0.01 <0.01 - 

Crofer 22 APU (A) JDA Bal. 22.5 0.42 0.05 0.075 0.1 0.12 0.16 - 

Crofer 22 APU (A) JMB Bal. 23.1 0.4 0.08 0.074 0.073 0.12 1) - 

Crofer 22 APU (A) JMC Bal. 22.6 0.4 0.072 0.07 0.056 0.12 1) - 

Crofer 22 APU (A) JMD Bal. 23.0 04. 0.076 0.077 0.067 0.12 1) - 

Crofer 22 APU (B) JZF Bal. 22.2 0.46 0.055 0.07 0.026 0.022 0.016 - 

Crofer 22 APU (B) JZN Bal. 22.2 0.47 0.066 0.072 0.028 0.021 0.017 - 

Crofer 22 APU (B) KCB Bal. 22.2 0.45 0.065 0.096 0.014 0.011 0.022 - 

ZMG232 HXT Bal. 22.1 0.48 - <0.01 0.36 0.19 0.31 - 

Alloy 446 HNK Bal. 24.9 0.5 <0.005 <0.01 <0.01 - - - 

1.4509 HLH Bal. 18 0.38 0.12 - 0.7 0.03 0.12 - 

1.4016 HMM Bal. 16.3 0.19 <0.01 - 0.25 <0.02 0.2 - 

1.4016-C3 HMP Bal. 16.2 0.29 <0.01 - 0.41 <0.02 0.26 - 

Model steel FeCrLa HCE Bal. 25.2 - 1) 0.42 - 1) - - 

Model steel FeCrMnY HCH Bal. 25.4 1.55 - - - - - 0.17

Pure Cr CSX - Bal. - - - - - - - 

Fe5Cr1Y2O3 (ODS) DCU 4.9 Bal. - - - - - - 0.48

Fe5Cr1Y2O3 (ODS) DCV 4.8 Bal. - - - - - - 0.49

Model steel (JS-3 base) JLV Bal. 23.3 0.38 0.049 0.06 0.12 0.01 - - 

Model steel (JS-3 base) JLT Bal. 23.4 0.36 0.048 0.11 0.01 0.14 - - 

1) Element not analysed  
Table 10.1: Chemical composition of studied steels, part 1 



10.   Appendix

153

Composition (wt. %) Steel Batch
name O C N S P Others 

JS-3 JEX 0.0016 0.007 0.0007 0.001 1)  

JS-3 JEW 0.0042 0.009 0.0009 < 0.001 1)  

Crofer 22 APU (A) JDA 0.0046 0.008 0.0113 < 0.001 1)  

Crofer 22 APU (A) JMB 0.0063 0.048 0.011 0.002 1)  

Crofer 22 APU (A)  JMC 0.0039 0.01 0.0108 0.001 1)  

Crofer 22 APU (A) JMD 0.0049 0.015 0.0109 0.001 1)  

Crofer 22 APU (B) JZF 0.0034 0.019 0.0073 < 0.001 < 0.01  

Crofer 22 APU (B) JZN 0.0026 0.003 0.0068 < 0.001 < 0.01  

Crofer 22 APU (B) KCB 0.0107 0.017 0.0023 0.002 < 0.01  

ZMG232 HXT 0.0013 0.017 0.0047 < 0.001 < 0.01 Zr: 0.13

Alloy 446 HNK 0.0056 0.039 0.1211 0.009 1)  

1.4509 HLH 0.0032 0.031 0.0137 0.002 1)  

1.4016 HMM 0.0075 0.054 0.0434 0.004 1)  

1.4016-C3 HMP 0.0129 0.072 0.0397 0.003 1)  

Model steel FeCrLa HCE 0.0052 0.021 0.0057 0.001 1)  

Model steel FeCrMnY HCH 0.0040 0.023 0.0012 0.003 1)  

Pure Cr CSX       

Fe5Cr1Y2O3 (ODS) DCU 0.3452 0.004 0.0044 < 0.001 1)  

Fe5Cr1Y2O3 (ODS) DCV 0.3815 0.016 0.0152 < 0.001 1)  

Model steel (JS-3 base) JLV 0.0163 0.017 0.0016 < 0.001 1)  

Model steel (JS-3 base) JLT 0.0129 0.011 0.0014 0.001 1)  

1) Element not analysed 
Table 10.2: Chemical composition of studied steels, part 2 
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Figure 10.1: Measured Cr depletion profiles for specimens of steel Crofer A with different 
initial thickness after cyclic oxidation at 800°C in air. 

Figure 10.2: Measured Cr depletion profiles for specimens of steel Crofer A with different 
initial thickness after cyclic oxidation at 900°C in air. 
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Figure 10.3: Measured Cr depletion profiles for specimens of steel JS-3 with different initial 
thickness after cyclic oxidation at 800°C in air. 

Figure 10.4: Measured Cr depletion profiles for specimens of steel JS-3 with different initial 
thickness after cyclic oxidation at 900°C in air. 
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Figure 10.5: Measured Cr depletion profiles for specimens of steel Crofer B with different 
initial thickness after cyclic oxidation at 800°C in air. 

Figure 10.6: Measured Cr depletion profiles for specimens of steel Crofer B with different 
initial thickness after cyclic oxidation at 900°C in air. 
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Figure 10.7: Measured Cr depletion profiles for specimens of steel ZMG232 with different 
initial thickness after cyclic oxidation at 800°C in air. 

Figure 10.8: Measured Cr depletion profiles for specimens of steel ZMG232 with different 
initial thickness after cyclic oxidation at 900°C in air. 
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Figure 10.9: Measured Cr depletion profiles for specimens of model steel FeCrLa (batch 
HCE) with different initial thickness after cyclic oxidation at 800°C in air. 

Figure 10.10: Measured Cr depletion profiles for specimens of model steel FeCrLa (batch 
HCE) with different initial thickness after cyclic oxidation at 900°C in air. 
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Figure 10.11: Measured Cr depletion profiles for specimens of model steel FeCrMnY (batch 
HCH) with different initial thickness after cyclic oxidation at 800°C in air. 

Figure 10.12: Measured Cr depletion profiles for specimens of model steel FeCrMnY (batch 
HCH) with different initial thickness after cyclic oxidation at 900°C in air. 

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180
Distance [ m]

C
r c

on
ce

nt
ra

tio
n 

[w
t. 

%
]

Oxidation time: 1000 h
Specimen thickness: 1.2 mm

Oxidation time: 936 h
Specimen thickness: 0.2 mm
(breakaway)

16

18

20

22

24

26

28

30

0 100 200 300 400 500 600 700
Distance [ m]

C
r c

on
ce

nt
ra

tio
n 

[w
t. 

%
]

Oxidation time: 1000 h
Specimen thickness: 1.2 mm

Oxidation time: 1000 h 
Specimen thckness: 0.4 mm





Acknowledgements 

The authors would like to thank all the people which have contributed to this work, especially 

our colleagues at the Institute of Energy Research, (IEF-2), Research Centre Jülich in which 

this work was carried out. 

The authors are also grateful to: 

Haldor Topsoe A/S and Topsoe Fuel Cell A/S for the financial support, 

the Central Technology Division (ZAT), Research Centre Jülich,

and the Central Division of Analytical Chemistry (ZCH), Research Centre Jülich. 





Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 

1. Fusion Theory 
Proceedings of the Seventh European Fusion Theory Conference 
edited by A. Rogister (1998); X, 306 pages 
ISBN: 978-3-89336-219-6 

2. Radioactive Waste Products 1997 
Proceedings of the 3rd International Seminar on Radioactive Waste Products 
held in Würzburg (Germany) from 23 to 26 June 1997 
edited by R. Odoj, J. Baier, P. Brennecke et al. (1998), XXIV, 506 pages 
ISBN: 978-3-89336-225-7 

3. Energieforschung 1998 
Vorlesungsmanuskripte des 4. Ferienkurs „Energieforschung“  
vom 20. bis 26. September 1998 im Congrescentrum Rolduc und  
im Forschungszentrum Jülich 
herausgegeben von J.-Fr. Hake, W. Kuckshinrichs, K. Kugeler u. a. (1998),  
500 Seiten 
ISBN: 978-3-89336-226-4 

4. Materials for Advances Power Engineering 1998 
Abstracts of the 6th Liège Conference 
edited by J. Lecomte-Beckers, F. Schubert, P. J. Ennis (1998), 184 pages 
ISBN: 978-3-89336-227-1 

5. Materials for Advances Power Engineering 1998 
Proceedings of the 6th Liège Conference  
edited by J. Lecomte-Beckers, F. Schubert, P. J. Ennis (1998),  
Part I XXIV, 646, X pages; Part II XXIV, 567, X pages; Part III XXIV, 623, X 
pages 
ISBN: 978-3-89336-228-8 

6. Schule und Energie 
1. Seminar Energiesparen, Solarenergie, Windenergie. Jülich, 03. und 
04.06.1998 
herausgegeben von P. Mann, W. Welz, D. Brandt, B. Holz (1998), 112 Seiten 
ISBN: 978-3-89336-231-8 

7. Energieforschung 
Vorlesungsmanuskripte des 3. Ferienkurses „Energieforschung“  
vom 22. bis 30. September 1997 im Forschungszentrum Jülich 
herausgegeben von J.-Fr. Hake, W. Kuckshinrichs, K. Kugeler u. a. (1997), 
505 Seiten 
ISBN: 978-3-89336-211-0 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
8. Liberalisierung des Energiemarktes 

Vortragsmanuskripte des 5. Ferienkurs „Energieforschung“  
vom 27. September bis 1. Oktober 1999 im Congrescentrum Rolduc und  
im Forschungszentrum Jülich 
herausgegeben von J.-Fr. Hake, A. Kraft, K. Kugeler u. a. (1999), 350 Seiten 
ISBN: 978-3-89336-248-6 

9. Models and Criteria for Prediction of Deflagration-to-Detonation Transition 
(DDT) in Hydrogen-Air-Steam-Systems under Severe Accident Conditions 
edited by R. Klein, W. Rehm (2000), 178 pages 
ISBN: 978-3-89336-258-5 

10. High Temperature Materials Chemistry 
Abstracts of the 10th International IUPAC Conference, April 10 - 14 2000, Jülich 
edited by K. Hilpert, F. W. Froben, L. Singheiser (2000), 292 pages 
ISBN: 978-3-89336-259-2 

11. Investigation of the Effectiveness of Innovative Passive Safety Systems for 
Boiling Water Reactors 
edited by E. F. Hicken, K. Verfondern (2000), X, 287 pages 
ISBN: 978-3-89336-263-9 

12. Zukunft unserer Energieversorgung 
Vortragsmanuskripte des 6. Ferienkurs „Energieforschung“  
vom 18. September bis 22. September 2000 im Congrescentrum Rolduc und  
im Forschungszentrum Jülich  
herausgegeben von J.-Fr. Hake, S. Vögele, K. Kugeler u. a. (2000),  
IV, 298 Seiten 
ISBN: 978-3-89336-268-4 

13. Implementing Agreement 026 
For a Programme of Research, Development and Demonstration on Advanced 
Fuel Cells: Fuel Cell Systems for Transportation. Annex X. Final Report 1997 - 
1999 
edited by B. Höhlein; compiled by P. Biedermann (2000), 206 pages 
ISBN: 978-3-89336-275-2 

14. Vorgespannte Guß-Druckbehälter (VGD) als berstsichere Druckbehälter für 
innovative Anwendungen in der Kerntechnik 
Prestressed Cast Iron Pressure Vessels as Burst-Proof Pressure Vessels for 
Innovative Nuclear Applications 
von W. Fröhling, D. Bounin, W. Steinwarz u. a. (2000) XIII, 223 Seiten 
ISBN: 978-3-89336-276-9 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
15. High Temperature Materials Chemistry 

Proceedings of the 10th International IUPAC Conference 
held from 10 to 14 April 2000 at the Forschungszentrum Jülich, Germany 
Part I and II 
edited by K. Hilpert, F. W. Froben, L. Singheiser (2000), xvi, 778, VII pages  
ISBN: 978-3-89336-259-2 

16. Technische Auslegungskriterien und Kostendeterminanten von SOFC- und 
PEMFC-Systemen in ausgewählten Wohn- und Hotelobjekten 
von S. König (2001), XII, 194 Seiten 
ISBN: 978-3-89336-284-4 

17. Systemvergleich: Einsatz von Brennstoffzellen in Straßenfahrzeugen 
von P. Biedermann, K. U. Birnbaum, Th. Grube u. a. (2001), 185 Seiten 
ISBN: 978-3-89336-285-1 

18. Energie und Mobilität 
Vorlesungsmanuskripte des 7. Ferienkurs „Energieforschung“  
vom 24. September bis 28. September 2001 im Congrescentrum Rolduc und  
im Forschungszentrum Jülich  
herausgegeben von J.-Fr. Hake, J. Linßen, W. Pfaffenberger u. a. (2001),  
205 Seiten 
ISBN: 978-3-89336-291-2 

19. Brennstoffzellensysteme für mobile Anwendungen 
von P. Biedermann, K. U. Birnbaum, Th. Grube u. a. (2002) 
PDF-Datei auf CD 
ISBN: 978-3-89336-310-0 

20. Materials for Advances Power Engineering 2002 
Abstracts of the 7th Liège Conference 
edited by J. Lecomte-Beckers, M. Carton, F. Schubert, P. J. Ennis (2002), 
c. 200 pages 
ISBN: 978-3-89336-311-7 

21. Materials for Advanced Power Engineering 2002 
Proceedings of the 7th Liège Conference  
Part I, II and III 
edited by J. Lecomte-Beckers, M. Carton, F. Schubert, P. J. Ennis (2002),  
XXIV, 1814, XII pages  
ISBN: 978-3-89336-312-4 

22. Erneuerbare Energien: Ein Weg zu einer Nachhaltigen Entwicklung? 
Vorlesungsmanuskripte des 8. Ferienkurs „Energieforschung“  
vom 23. bis 27. September 2002 in der Jakob-Kaiser-Stiftung, Königswinter  
herausgegeben von J.-Fr. Hake, R. Eich, W. Pfaffenberger u. a. (2002),  
IV, 230 Seiten 
ISBN: 978-3-89336-313-1 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
23. Einsparpotenziale bei der Energieversorgung von Wohngebäuden durch 

Informationstechnologien 
von A. Kraft (2002), XII, 213 Seiten 
ISBN: 978-3-89336-315-5 

24. Energieforschung in Deutschland 
Aktueller Entwicklungsstand und Potentiale ausgewählter nichtnuklearer 
Energietechniken 
herausgegeben von M. Sachse, S. Semke u. a. (2002), II, 158 Seiten, 
zahlreiche farb. Abb. 
ISBN: 978-3-89336-317-9 

25. Lebensdaueranalysen von Kraftwerken der deutschen Elektrizitäts-
wirtschaft 
von A. Nollen (2003), ca. 190 Seiten 
ISBN: 978-3-89336-322-3 

26. Technical Session: Fuel Cell Systems of the World Renewable Energy 
Congress VII 
Proceedings 
edited by D. Stolten and B. Emonts (2003), VI, 248 pages 
ISBN: 978-3-89336-332-2 

27. Radioactive Waste Products 2002 (RADWAP 2002) 
Proceedings 
edited by R. Odoj, J. Baier, P. Brennecke and K. Kühn (2003), VI, 420 pages 
ISBN: 978-3-89336-335-3 

28. Methanol als Energieträger 
von B. Höhlein, T. Grube, P. Biedermann u. a. (2003), XI, 109 Seiten 
ISBN: 978-3-89336-338-4 

29. Hochselektive Extraktionssysteme auf Basis der Dithiophosphinsäuren: 
Experimentelle und theoretische Untersuchungen zur Actinoiden(III)-
Abtrennung 
von S. A. H. Nabet (2004), VI, 198 Seiten 
ISBN: 978-3-89336-351-3 

30. Benchmarking-Methodik für Komponenten in Polymerelektrolyt-Brenn-
stoffzellen 
von Matthias Gebert (2004), 194 Seiten 
ISBN: 978-3-89336-355-1 

31. Katalytische und elektrochemische Eigenschaften von eisen- und kobalt-
haltigen Perowskiten als Kathoden für die oxidkeramische Brennstoffzelle 
(SOFC) 
von Andreas Mai (2004), 100 Seiten 
ISBN: 978-3-89336-356-8 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
32. Energy Systems Analysis for Political Decision-Making 

edited by J.-Fr. Hake, W. Kuckshinrichs, R. Eich (2004), 180 pages 
ISBN: 978-3-89336-365-0 

33. Entwicklung neuer oxidischer Wärmedämmschichten für Anwendungen in 
stationären und Flug-Gasturbinen 
von R. Vaßen (2004), 141 Seiten 
ISBN: 978-3-89336-367-4 

34. Neue Verfahren zur Analyse des Verformungs- und Schädigungsverhaltens 
von MCrAlY-Schichten im Wärmedämmschichtsystem 
von P. Majerus (2004), 157 Seiten 
ISBN: 978-3-89336-372-8 

35. Einfluss der Oberflächenstrukturierung auf die optischen Eigenschaften 
der Dünnschichtsolarzellen auf der Basis von a-Si:H und µc-Si:H 
von N. Senoussaoui (2004), 120 Seiten 
ISBN: 978-3-89336-378-0 

36. Entwicklung und Untersuchung von Katalysatorelementen für innovative  
Wasserstoff-Rekombinatoren 
von I.M. Tragsdorf (2005), 119 Seiten 
ISBN: 978-3-89336-384-1 

37. Bruchmechanische Untersuchungen an Werkstoffen für Dampfkraftwerke 
mit Frischdampftemperaturen von 500 bis 650°C 
von L. Mikulová (2005), 149 Seiten 
ISBN: 978-3-89336-391-9 

38. Untersuchungen der Strukturstabilität von Ni-(Fe)-Basislegierungen für 
Rotorwellen in Dampfturbinen mit Arbeitstemperaturen über 700 °C 
von T. Seliga (2005), 106 Seiten 
ISBN: 978-3-89336-392-6 

39. IWV-3 Report 2005. Zukunft als Herausforderung 
(2005), 115 Seiten 
ISBN: 978-3-89336-393-3 

40. Integrierter Photodetektor zur Längenmessung 
von E. Bunte (2005), XI, 110 Seiten 
ISBN: 978-3-89336-397-1 

41. Microcrystalline Silicon Films and Solar Cells Investigated by 
Photoluminescence Spectroscopy 
by T. Merdzhanova (2005), X, 137 pages 
ISBN: 978-3-89336-401-5 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
42. IWV-3 Report 2005. Future as a challenge 

(2005), 115 pages 
ISBN: 978-3-89336-405-3 

43. Electron Spin Resonance and Transient Photocurrent Measurements on 
Microcrystalline Silicon  
by T. Dylla (2005), X, 138 pages 
ISBN: 978-3-89336-410-7 

44. Simulation und Analyse des dynamischen Verhaltens von Kraftwerken mit 
oxidkeramischer Brennstoffzelle (SOFC) 
von M. Finkenrath (2005), IV, 155 Seiten 
ISBN: 978-3-89336-414-5 

45. The structure of magnetic field in the TEXTOR-DED 
by K.H. Finken, S.S. Abdullaev, M. Jakubowski, M. Lehnen, A. Nicolai, 
K.H. Spatschek (2005), 113 pages 
ISBN: 978-3-89336-418-3 

46. Entwicklung und Modellierung eines Polymerelektrolyt-
Brennstoffzellenstapels der 5 kW Klasse 
von T. Wüster (2005), 211 Seiten 
ISBN: 978-3-89336-422-0 

47. Die Normal-Wasserstoffelektrode als Bezugselektrode in der Direkt-
Methanol-Brennstoffzelle 
von M. Stähler (2006), VI, 96 Seiten 
ISBN: 978-3-89336-428-2 

48. Stabilitäts- und Strukturmodifikationen in Katalysatordispersionen der 
Direktmethanolbrennstoffzelle 
von C. Schlumbohm (2006), II, 211 Seiten 
ISBN: 978-3-89336-429-9 

49. Eduktvorbereitung und Gemischbildung in Reaktionsapparaten zur 
autothermen Reformierung von dieselähnlichen Kraftstoffen 
von Z. Porš (2006), XX, 182, XII Seiten 
ISBN: 978-3-89336-432-9 

50. Spektroskopische Untersuchung der poloidalen Plasmarotation unter dem 
Einfluß statischer und dynamischer Ergodisierung am Tokamak TEXTOR 
von C. Busch (2006), IV, 81 Seiten 
ISBN: 978-3-89336-433-6 

51. Entwicklung und Optimierung von Direktmethanol-Brennstoffzellstapeln 
von M. J. Müller (2006), 167 Seiten 
ISBN: 978-3-89336-434-3 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
52. Untersuchung des reaktiven Sputterprozesses zur Herstellung von 

aluminiumdotierten Zinkoxid-Schichten für Silizium-
Dünnschichtsolarzellen 
von J. Hüpkes (2006), XIV, 170 Seiten 
ISBN: 978-3-89336-435-0 

53. Materials for Advanced Power Engineering 2006 
Proceedings of the 8th Liège Conference  
Part I, II and III 
edited by J. Lecomte-Beckers, M. Carton, F. Schubert, P. J. Ennis (2006), 
Getr. Pag. 
ISBN: 978-3-89336-436-7 

54. Verdampfung von Werkstoffen beim Betrieb von 
Hochtemperaturbrennstoffzellen (SOFC) 
von M. Stanislowski (2006), IV, 154 Seiten 
ISBN: 978-3-89336-438-1 

55. Methanol as an Energy Carrier 
edited by P. Biedermann, Th. Grube, B. Höhlein (2006), XVII, 186 pages 
ISBN: 978-3-89336-446-6 

56. Kraftstoffe und Antriebe für die Zukunft 
Vorlesungsmanuskripte des 1. Herbstseminars „Kraftstoffe und Antriebe für die 
Zukunft“ vom 9.-13. Oktober 2006 an der TU Berlin 
herausgegeben von V. Schindler, C. Funk, J.-Fr. Hake, J. Linßen (2006), VIII, 
221 Seiten 
ISBN: 978-3-89336-452-7 

57. Plasma Deposition of Microcrystalline Silicon Solar Cells: Looking Beyond 
the Glass 
by M. N. van den Donker (2006), VI, 110 pages 
ISBN: 978-3-89336-456-5 

58. Nuclear Energy for Hydrogen Production 
by K. Verfondern (2007), 186 pages 
ISBN: 978-3-89336-468-8 

59. Kraft-Wärme-Kopplung mit Brennstoffzellen in Wohngebäuden im 
zukünftigen Energiesystem 
von C. H. Jungbluth (2007), XI, 197 Seiten 
ISBN: 978-3-89336-469-5 

60. Finite Element Simulation of Stress Evolution in Thermal Barrier Coating 
Systems 
by P. Bednarz (2007), XIV, 121 pages 
ISBN: 978-3-89336-471-8 



Schriften des Forschungszentrums Jülich 
Reihe Energietechnik / Energy Technology 
 
61. Modellierung der Prozesse in katalytischen Rekombinatoren 

von J. Böhm (2007), VI, 116 Seiten 
ISBN: 978-3-89336-473-2 

62. Entwicklung einer Heliumstrahldiagnostik zur Messung der 
Elektronendichte und – temperatur mit hoher räumlicher und zeitlicher 
Auflösung 
von U. Kruezi (2007), IV, 151 Seiten 
ISBN: 978-3-89336-476-3 

63. IEF-3 Report 2007. Von Grundlagen bis zum System 
(2007), 164 Seiten 
ISBN: 978-3-89336-479-4 

64. Entwicklung eines Direkt-Methanol-Brennstoffzellensystems der 
Leistungklasse kleiner 5 kW 
von M. Nölke (2007), 194 Seiten 
ISBN: 978-3-89336-481-7 

65. Effect of geometry and composition of Cr steels on oxide scale properties 
relevant for interconnector applications in Solid Oxide Fuel Cells (SOFCs) 
by P. Huczkowski, W.J. Quadakkers (2007), 159 pages 
ISBN: 978-3-89336-484-8 

 

 

 
 
 
 
 





Energietechnik
Energy Technology

Band / Volume 65
ISBN 978-3-89336-484-8

��������	�
�����
�������
����������	
���
���	�����
���

In this book recently developed SOFC interconnect materials as well as other commonly used high-Cr commercial steels
were investigated with respect to their oxidation behaviour in the temperature range required for SOFC application (700 °C
– 900 °C). SOFC market requirements (e.g., in the automotive industry) lead in many cases to the demand for a reduction
of the fuel cell size and /or weight and thus of the interconnector thickness. Therefore, the main emphasis was made to
investigate changes in the oxidation behaviour in the case of thin components.
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