001     59010
005     20200402210426.0
024 7 _ |2 pmid
|a pmid:17655327
024 7 _ |2 DOI
|a 10.1021/bi700563f
024 7 _ |2 WOS
|a WOS:000248692400005
037 _ _ |a PreJuSER-59010
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Mironova, O. S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB58062
245 _ _ |a FT-IR difference spectroscopy elucidates crucial interactions of sensory rhodopsin I with the cognate transducer Htrl
260 _ _ |a Columbus, Ohio
|b American Chemical Society
|c 2007
300 _ _ |a 9399 - 9405
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Biochemistry
|x 0006-2960
|0 798
|y 33
|v 46
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The phototaxis receptor sensory rhodopsin I (SRI) from Halobacterium salinarum interacts with its cognate transducer (HtrI) forming a transmembrane complex. After light excitation of the chromophore all-trans retinal, SRI undergoes structural changes that are ultimately transmitted to HtrI. The interaction of SRI with HtrI results in the closure of the receptor's proton pathway, which renders the photocycle recovery kinetics of SRI pH-independent. We demonstrate on heterologously expressed and reconstituted SRI-HtrI fusion proteins that the transmembrane part of HtrI (residues 1-52) as well as the downstream cytoplasmic part (residues 53-147) exhibit conformational changes after light excitation. The sum of these conformational changes is similar to those observed in the fusion constructs SRI-HtrI 1-71 and SRI-HtrI 1-147, which display pH-independent receptor kinetics. These results indicate the occurrence of spatially distinct conformational changes that are required for functional signal transmission. Kinetic and spectroscopic analysis of HtrI point mutants of Asn53 provides evidence that this residue is involved in the receptor-transducer interaction. We suggest that Asn53 plays a role similar to that of Asn74 of the HtrII from Natronobacterium pharaonis, the latter forming a hydrogen bond to the receptor within the membrane.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Archaeal Proteins: chemistry
650 _ 2 |2 MeSH
|a Archaeal Proteins: genetics
650 _ 2 |2 MeSH
|a Archaeal Proteins: radiation effects
650 _ 2 |2 MeSH
|a Asparagine: chemistry
650 _ 2 |2 MeSH
|a Asparagine: genetics
650 _ 2 |2 MeSH
|a Halorhodopsins: chemistry
650 _ 2 |2 MeSH
|a Halorhodopsins: genetics
650 _ 2 |2 MeSH
|a Halorhodopsins: radiation effects
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Membrane Proteins: chemistry
650 _ 2 |2 MeSH
|a Membrane Proteins: genetics
650 _ 2 |2 MeSH
|a Membrane Proteins: radiation effects
650 _ 2 |2 MeSH
|a Point Mutation
650 _ 2 |2 MeSH
|a Protein Interaction Mapping
650 _ 2 |2 MeSH
|a Recombinant Fusion Proteins: chemistry
650 _ 2 |2 MeSH
|a Recombinant Fusion Proteins: genetics
650 _ 2 |2 MeSH
|a Recombinant Fusion Proteins: radiation effects
650 _ 2 |2 MeSH
|a Sensory Rhodopsins: chemistry
650 _ 2 |2 MeSH
|a Sensory Rhodopsins: genetics
650 _ 2 |2 MeSH
|a Sensory Rhodopsins: radiation effects
650 _ 2 |2 MeSH
|a Spectroscopy, Fourier Transform Infrared
650 _ 7 |0 0
|2 NLM Chemicals
|a Archaeal Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Halorhodopsins
650 _ 7 |0 0
|2 NLM Chemicals
|a Membrane Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Recombinant Fusion Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a SRI protein, Halobacterium
650 _ 7 |0 0
|2 NLM Chemicals
|a Sensory Rhodopsins
650 _ 7 |0 0
|2 NLM Chemicals
|a htrI protein, Halobacterium salinarium
650 _ 7 |0 7006-34-0
|2 NLM Chemicals
|a Asparagine
650 _ 7 |a J
|2 WoSType
700 1 _ |a Budyak, I. L.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB58065
700 1 _ |a Büldt, G.
|b 2
|u FZJ
|0 P:(DE-Juel1)131957
700 1 _ |a Schlesinger, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB1421
700 1 _ |a Heberle, J.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB572
773 _ _ |a 10.1021/bi700563f
|g Vol. 46, p. 9399 - 9405
|p 9399 - 9405
|q 46<9399 - 9405
|0 PERI:(DE-600)1472258-6
|t Biochemistry
|v 46
|y 2007
|x 0006-2960
856 7 _ |u http://dx.doi.org/10.1021/bi700563f
909 C O |o oai:juser.fz-juelich.de:59010
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k INB-2
|l Molekulare Biophysik
|d 31.12.2008
|g INB
|0 I:(DE-Juel1)VDB805
|x 0
970 _ _ |a VDB:(DE-Juel1)92947
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21