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Dynamical mean-field theory combined with finite-temperature exact diagonalization is shown to be a
suitable method to study local Coulomb correlations in realistic multiband materials. By making use of the
sparseness of the impurity Hamiltonian, exact eigenstates can be evaluated for significantly larger clusters than
in schemes based on full diagonalization. Since finite-size effects are greatly reduced this approach allows the
study of three-band systems down to very low temperatures, for strong local Coulomb interactions and full
Hund exchange. It is also shown that exact diagonalization yields smooth subband quasiparticle spectra and
self-energies at real frequencies. As a first application the correlation induced charge transfer between #,, bands
in Naj3Co0, is investigated. For both Hund and Ising exchange the small e;, Fermi surface hole pockets are
found to be slightly enlarged compared to the noninteracting limit, in agreement with previous quantum Monte
Carlo dynamical mean-field calculations for Ising exchange, but in conflict with photoemission data.
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I. INTRODUCTION

Dynamical mean-field theory'> (DMFT) has been used
successfully during recent years to describe the electronic
properties of a variety of strongly correlated materials.> The
hallmark of these systems are their complex lattice geom-
etries, giving rise to intricate single-particle properties, ac-
companied by complex many-electron interactions in par-
tially filled, nearly localized atomic orbitals. These
characteristics lead to a wealth of physical phenomena such
as metal insulator transitions, exotic magnetic structures, and
unconventional superconducting phases.* The virtue of
DMEFT is that it treats single-electron and many-electron fea-
tures on the same footing. The key conceptual advance of
this approach is the mapping of the lattice problem onto an
effective impurity problem which is solved numerically ex-
actly. The local self-energy is then determined via a self-
consistency procedure.

The many-body impurity problem can be solved, in the
case of single-band systems, by using techniques such as
numerical  renormalization  group>  (NRG),  exact
diagonalization® (ED), quantum Monte Carlo’ (QMC), or
other schemes.! For computational reasons dynamical corre-
lations in realistic multiband materials have so far been in-
vestigated mainly within QMC,? iterated perturbation theory®
(IPT), and the fluctuation exchange method® (FLEX). The
versatility of the QMC approach is made feasible by allow-
ing only for Ising-like exchange interactions to avoid serious
sign problems at low temperatures.'” Extensions of QMC
including full Hund’s exchange are presently limited to T
=0" and rather high temperatures (7> 1500 K).'? Spin-flip
interactions at low finite temperatures can be taken into ac-
count in two recently developed schemes, namely, the
continuous-time QMC method!>'* and the combination of
the Hirsch-Fye algorithm with a perturbation series
expansion.

The aim of this work is to demonstrate that multiband
ED/DMFT is a highly useful scheme for the investigation of
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Coulomb correlations in realistic materials. In the past, ap-
plications of ED/DMFT were limited to one-band and two-
band systems because of the extremely rapid increase of the
Hilbert space when the size n, of the cluster used to simulate
the solid is enlarged.'®!8 For instance, ED with two impurity
orbitals, each coupled to three bath levels (n,=8), requires
diagonalization of matrices with dimension up to 4900 which
roughly represents the time and storage limit of what is com-
putationally meaningful.'” We show here that a considerable
simplification of this task can be achieved by exploiting the
extreme sparseness of the Hamiltonian matrices and focusing
on the limited number of excited states relevant at low tem-
peratures. As a result the cluster size n,=12 can be treated at
about the same computational cost as full diagonalization for
n,=8. This improvement allows the application of ED/
DMEFT to realistic three-band systems.

In this work we study the intercalated layer compound
Na,CoO, which exhibits an unusual range of electronic prop-
erties as a function of Na doping: unconventional supercon-
ductivity, magnetic and charge ordering, and metal insulator
transition. Here we focus on one of the most puzzling and
controversial aspects, namely, the topology of the Fermi sur-
face at x=0.3, the Na concentration at which the system
becomes superconducting when additionally doped with
water.29 As a result of the octahedral crystal field, the Co 3d
bands are split into #,, and e, subbands separated by a finite
energy gap. With Na doping the filling of the #,, bands can
be continuously tuned between n=5 and n=6. The rhombo-
hedral symmetry at Co sites yields a further splitting of 1,,
orbitals into an a, and two doubly degenerate eé, orbitals.
According to density functional theory within the local den-
sity approximation (LDA) the Fermi surface consists of a
large a, hole surface centered at I' and six small e}:, hole
pockets along the I'K directions.?! At x=0.3 the 0.7 holes in
the 7,, band consist of about 0.4 a, holes and 0.3 eg', holes.
Thus, both types of states should be important for a variety
of electronic and magnetic properties.

In striking contrast to these LDA predictions, angle-
resolved photoemission spectroscopy (ARPES) experiments
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reveal only the large a, Fermi surface, the eé', bands being
completely filled.?>* To resolve this discrepancy several
possible explanations have been discussed in the literature.
Since the onsite Coulomb energy U among Co 3d electrons
is about twice the width of the #,, bands a correlation in-
duced inter-orbital charge transfer among t,, states could in
principle modify the shape of the Fermi surface. Dynamical
correlations evaluated within multiband QMC/DMFT for a
realistic single-particle Hamiltonian predict slightly enlarged
e! Fermi surface pockets.?> The same trend was found in
recent QMC/DMFT calculations.?®?” On the other hand, ac-
counting approximately for band narrowing via the
Gutzwiller approach, filled eé’, bands were obtained in the
strong-coupling U — o limit,”® but these calculations have
not yet been extended to realistic values of U and finite ex-
change integrals J.

The role of the intercalated Na atoms has also been stud-
ied. Within LDA, disorder in the Na layer was shown to
produce potential variations that can localize the e Fermi
surface pockets, at least for large doping.”® A recent LDA
+QMC/DMEFT study of Na disorder also showed that the
pockets are likely to disappear at large x, but to remain stable
near x=0.3.%

Although the QMC/DMFT results>~27 so far represent the
most accurate analysis of correlation induced modifications
of the Fermi surface of Naj;CoO,, they are limited to Ising
exchange because of the QMC sign problems alluded to
above. Since the e;’, bands reach only about 100 meV above
the Fermi level—an energy much smaller than typical ex-
change integrals—there arises the question to what extent the
inclusion of full Hund’s exchange might provide an explana-
tion of the observed ARPES data.

To address this issue we have applied ED/DMFT to
Naj;C00,. The important result of the present work is that
dynamical on-site correlations within the Co t,, manifold for
realistic values of Coulomb and exchange energies give rise
to a transfer of electronic charge from the e;’, bands to the a
band. For Hund’s exchange and 7=10 meV the number of ,
holes is decreased to 0.351 compared to the LDA value 0.40,
while the number of e; holes is increased to 0.349 from the
LDA value 0.30. Nearly identical values are found for Ising
exchange: 0.345 (a,) and 0.355 (eg). These results are quali-
tatively consistent with previous QMC/DMFT calculations
for Ising exchange at T=30—-60 meV. Local Coulomb corre-
lations can therefore be ruled out as a possible explanation of
the absence of the eé hole pockets in the ARPES data.

It remains to be investigated experimentally and theoreti-
cally to what extent the photoemission data are influenced by
surface effects which have played a crucial role also in other
transition metal oxides, such as Sr,RuO, and Sr,Ca;_ VOs;.
Also, we note that the present ARPES results do not seem to
be consistent with recent Shubnikov—de Haas measurements
of the Fermi surface of Naj;C00,.3¢

The present work establishes multiband ED/DMFT as a
useful scheme for describing strongly correlated materials. In
this sense ED/DMFT can now be regarded as complementary
to multiband QMC/DMFT. In comparison to standard
Hirsch-Fye QMC treatments, important advantages of ED/
DMFT are that spin-flip and pair-exchange interactions are
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fully taken into account, large Coulomb energies pose no
computational problems, and temperatures as low as 5 to
10 meV are readily accessible.

The outline of this paper is as follows. In Sec. II we
present the main ingredients of the multiband ED/DMFT ap-
proach. We also argue that it is possible within this scheme to
evaluate continuous spectral functions and self-energies at
real frequencies for the extended material. Section III pre-
sents the application to Najy;Co0O, where we focus on the
correlation induced charge transfer among the partially filled
I, bands. Summary and outlook are given in Sec. IV.

II. THEORY
A. Multiband ED/DMFT

Let us consider a material whose single-particle properties
are characterized by a Hamiltonian H(k). In the case of par-
tially occupied #,, bands of a transition metal oxide such as
Na,CoO,, H(k) is a 3 X 3 matrix whose elements account for
direct interactions between f,, orbitals as well as indirect
interactions via neighboring oxygen ions. In addition we
consider on-site Coulomb interactions which are comparable
to or larger than the #,, band width. The purpose of single-
site DMFT is to derive a local self-energy 2 (w) which de-
scribes the modification of the single-particle bands caused
by Coulomb interactions. The local lattice Green’s function
is then given by the expression

Goplio,) = 2 [iw, + p— HK) - 2(iw,) 5. (1)
k

where w,=(2n+ 1)7kzT are Matsubara frequencies, u is the
chemical potential, and a,,B:de,dxz,dyZ denotes the tp, OI-
bital basis. We consider paramagnetic systems and omit the
spin index of Green’s functions and self-energies for conve-
nience.

In the case of a two-dimensional hexagonal lattice, local
quantities such as G ,4(iw,) have only two independent ele-
ments given by G{1=Gy»=G33 and G;,=G;3=Gy. It is
therefore convenientr to go over to the a,, eg, _basis, where
ag=(dxy+dxz-i-_dyz)/\e’3, e;,] =(d,y+d,,~2d,,)/\6, and e;ﬂ
=(d,,—d,,)/\2. Within this basis G becomes diagonal, with
elements

Gm:l = Gag:Gll+2G12’ (2)

Gpo3 = Ge); =G -Gy (3)

The reverse transformation is G,»iz(Gag+2Ge/)/ 3 and Gy
=(Gug—Ge’)/ 3. Except for the Brillouin zone irﬁtegral in Eq.
(1) we pertgorm all subsequent calculations in the diagonal a,,
e;, basis denoted by m=1,...,3. Analogous transformations
hold for other Ilattice structures, such as square two-
dimensional or cubic three-dimensional systems.

For the purpose of the quantum impurity calculation it is
necessary to first remove the self-energy from the central
site. This step yields the impurity Green’s function
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Gom(iw,) =[G, (i)™ + 2, (iw,) ] 4)

Note that, since G, G, and %, characterize the extended
solid, they have smooth, continuous spectra at real frequen-
cies.

Within ED/DMFT? the lattice impurity Green’s function
Gy, 1s approximated via an Anderson impurity model for a
cluster consisting of impurity levels g, 3 and bath levels
g,=4,...,n, coupled via hopping matrix elements V,,;. Thus,

Goulie,) = Gi,(iw,), (5)

where

n -1
G(C)l,m(lwn) = (iwn tu—€,— E | k|8 ) . (6)
k

k=4 LWy —

Here, n,=12 is the cluster size used in the calculations dis-
cussed below. Since G(C)l’m is diagonal in orbital indices, each
impurity level couples to its own bath containing three lev-
els. Thus, the hopping elements V4 ¢ Va7 .9, and
Vilo...1» are finite, all others vanish. Each function

gi’m(iwn) therefore involves seven fitting parameters: one
impurity level, three bath levels, and three hopping elements.
These parameters are found by using a standard minimiza-
tion procedure. (We employ the routine MINIMIZE provided
in Ref. 1.) Evidently, in contrast to Im G ,,, at real & Im Go m
is discrete, with the number of poles determined by the clus-
ter size.

The impurity Hamiltonian for the cluster is defined as

Iu‘)nma- + E E Mot E mG[cmo-cka' +H.c. ]

mko

H=, (s,
+E Unyiiyy,| + E v’

m<m' oo’

- Jaa'a')nmonm’o’

.
- > J/[C:,;Tcmlcm’lcm’T+C;1TC;leﬂl’Tcm’l]’ (7)
m#m’

where c( *) are annihilation (creation) operators for electrons
in 1mpur1ty level m=3 with spin o and n,,,=c}, ¢, With a
similar notation for the bath levels k=4, ... ,n,. H.c. denotes
Hermitian conjugate terms. The atomic part of the Hamil-
tonian is identical with the atomic part of the Hamiltonian of
the extended material. The intraorbital and interorbital impu-
rity Coulomb energies are denoted by U and U’. The ex-
change integral is J. Because of rotational invariance it obeys
the relation U'=U-2J. Spin-flip and pair-exchange terms
are denoted explicitly by J'. In the case of isotropic Hund
exchange, one has J'=J. In the case of Ising-like exchange
these terms are neglected, so that J'=0. The Coulomb and
exchange integrals have the same values in the 1,, and a,, eé
representations.

Within the diagonal g e é', basis, the cluster Green’s func-
tion has the spectral representation'-3°
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2
Gyliw,) = ZE ;M'?Uw' Pt e

__Ee BE ) GV+

mao

(iw,) +G. (iw,)], (8)

where E, and |v) are eigenvalues and eigenvectors of the
impurity Hamiltonian and Z=X exp(-BE,) is the partition
function. The excited state Green’s functions are given by

- Kule, V>|
Gylio,) = E EE— o, ©)
Golio,) = 2—;<M|?"|_Vf| (10)

In analogy to Eq. (4) the cluster self-energy is given by
the expression

2Cl(l“) ) GO m(lwn)_ - Glcé(lwn)_l . (] 1)

As will be discussed in more detail in Sec. II C, it is useful to

regard the self-energy as the central quantity determined via

DMFT. The key physical assumption within the ED approach

is then that the cluster self-energy is an adequate representa-
tion for the self-energy of the extended solid, i.e.,

3 (iw,) = 3%iw,). (12)
From Eq. (4) it now follows that
Glio,) = Gy i,). (13)

The approximate equalities here are important since they en-
sure that, as in the case of G, at real w two alternative
representations exist: a continuous one for the lattice Green’s
function G,, and self-energy 2., and a discrete one for the
cluster Green’s function Gf,l and self-energy Ecm'. (See Fig. 13
of Ref. 1 for a nice illustration of the fact that continuous and
discrete real-w spectra can yield similar distributions at Mat-
subara frequencies.)

Transforming from the a,, e;, basis to the fhe basis via
3=, +2Ee , El;ﬁj—z Ee , we insert this self-energy
into the solid Green’s functlon (1). The iteration cycle then
has the schematic form

3 5G-Gy=Gl -Gl -39=3, (14)
This procedure is repeated until a self-consistent solution is
found for a given chemical potential. This potential is then
varied until the calculated total occupancy of the ,, bands
agrees with the desired occupancy.

In practice, we start from the noninteracting case, where
the cluster levels ¢,, and g; and hopping matrix elements V,,;
are found for G, (iw,)=G,(iw,) with 3,=0. These cluster
parameters are then used to begin the iteration at finite Cou-
lomb and exchange energies for a particular temperature. Fi-
nally, the spectral distributions are given by
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Am(w)=—11—TIm G,(w). (15)

The transformation of G,,(iw,) and X, (iw,) to real frequen-
cies will be discussed in the following subsection.

At low temperatures, the Boltzmann factors in Eq. (8)
ensure that only a small number of excited states |v) are
needed. Because of the sparseness of the impurity Hamil-
tonian matrix, these states can be evaluated exactly by using
the Arnoldi algorithm.?! For a given excited state the Green’s
functions G (iw,) can then be calculated very accurately
using the Lanczos procedure, by starting from the vectors
¢ | v) and c,,,|v), respectively,

(HemoChol?)

Gl (iw,) = 5 . (16)
, bl+
Aoy —iw, + - 5
aj —iw, + b3,/ -
vleh ConolV
Go(iw,) = {olCnotndl) (17)

b2

i+ bl

aog_ — iwn +

The reformulation of the cluster Green’s function in Eqs.
(8), (9), (10) is similar to the one used by Capone et al.’® in
the single-band case, except that these authors calculate the
excited states |v) by applying the Lanczos method. This is
faster than the exact solution if only few excited states are
important. However, once extensive reorthogonalization is
required to obtain sufficiently accurate excited states, the
Lanczos method becomes increasingly time consuming so
that the exact approach is preferable.

The Arnoldi algorithm is very useful since it enormously
reduces both storage and time requirements to carry out ED/
DMEFT calculations. For n,=12 the largest Hilbert space for
ny=n 1 =6 has dimension N=853 776. Nevertheless, at most
M =23 elements are finite in any given row of the Hamil-
tonian matrix. The size of the effective N XM matrix is
therefore less than for full diagonalization of the largest sec-
tor (4900) in the case ny=8. Moreover, at temperatures of
about 7=10 meV fewer than 30 of the 169 possible ()
configurations have lowest eigenvalues with Boltzmann fac-
tors larger than 107>. Most of these sectors contribute only
few excited states. Only in some (n;,n|) sectors 20 to 40
eigenstates are important. Thus for a total of about 300 ex-
cited states the Green’s functions G- (iw,) are calculated via
the Lanczos procedure. Of course, this number increases at
higher temperatures, and if Boltzmann factors smaller than
1073 are included for higher precision. Finally, the Arnoldi
algorithm requires as main computational step the matrix
times vector operation Hu=v where H has effective dimen-
sion N X M, the vectors u,v are of length N and the internal
sum extends only over the finite elements of H. Thus, in
contrast to full diagonalization, this method is ideally suited
for parallelization. A typical iteration, requiring about 8 h on
a single fast pc, takes less than 30 min if 16 processors are
employed in parallel. For a given chemical potential, conver-
gence is usually reached after 5 to 10 iterations. We have
tested the above procedure on the two-band model consisting
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of half-filled subbands of different widths and found excel-
lent agreement with previous results for n,=8 based on full
diagonalization.'

B. Quasiparticle spectra at real frequencies

In the ED/DMFT equations given above we explicitly dis-
tinguish, via the superscript “cl,” the cluster Green’s func-
tions and self-energy from the corresponding quantities of
the extended solid. This is done in order to emphasize that
ED/DMFT is well suited for evaluating continuous solid qua-
siparticle spectra at real frequencies, as we now explain.

The key point is that the solid spectra are to be derived
from G,,(w), Eq. (1), rather than Gfi(w), Eq. (8). Although in
the self-consistent limit both functions agree at Matsubara
frequencies within some uncertainty determined by the clus-
ter size, they differ fundamentally at real frequencies, with
G,,(w) exhibiting a smooth spectrum and G (w) consisting
of & functions. Within the spirit of finite-temperature ED/
DMEFT each iteration step involves the evaluation of the solid
Green’s function G,, via Eq. (1) and the subsequent approxi-
mation of the associated impurity function G, in Eq. (4) via
the discrete cluster spectrum of G, Eq. (6). At a given
temperature, the quality of this projection onto the set of
Matsubara frequencies depends strongly on the cluster size,
i.e., on the number of poles at real w.

The task at the end of the iteration procedure, of trans-
forming the lattice subband Green’s functions G,,(iw,) from
Matsubara frequencies to real w, is therefore similar to the
one faced in QMC/DMFT. The difference is that the ED/
DMEFT data exhibit finite-size effects rather than statistical
uncertainties.

Since the ED/DMFT calculations are free of statistical
effects, a convenient extrapolation of G,,(iw,) to real fre-
quencies can be achieved by using, for example, the routine
RATINT*? based on an approximation in terms of rational
functions. The polynomial basis of this extrapolation ensures
that at real w the correct continuous lattice spectrum is found
for Im G,,(w), rather than a discrete spectrum for fixed ng, as
obtained by fitting G, via the cluster impurity Green’s
function Gf){,,l. We use the extrapolation routine RATINT in the
next section to evaluate the complex subband quasiparticle
Green’s functions G,,(w) for Naj3C00,.

C. Central role of self-energy

We like to point out that, rather than back transforming
the lattice Green’s function from imaginary to real frequen-
cies, it is more appropriate to perform this transformation on
the self-energy. In fact, as mentioned above, the self-energy
may be regarded as the central quantity determined by the
DMEFT self-consistent quantum-impurity treatment. Since ul-
timately one is interested in the solid quasiparticle Green’s
function given in Eq. (1), the single-particle features deter-
mined by the Hamiltonian H(Kk) can evidently be evaluated at
real w. Thus, only the real-w variation of the self-energy is
needed. As a result, k-resolved spectra can be calculated via

A(k,w):—}TImTr[w+,U,—H(k)—E(w)]_l. (18)
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The usefulness of transforming ¥ from Matsubara to real
frequencies can be seen at small U. The spectral details of G
are then almost entirely of single-particle character, whereas
the self-energy becomes very smooth. Since 2 is a highly
convoluted function, with contributions stemming from the
occupied and unoccupied regions of the density of states,
back transforming it to real w becomes progressively simpler
at small U. In contrast, the back transformation of G gets
more difficult. Obviously, since H(K) is known the back
transformation of the single-particle part of G can be avoided
altogether.

It is well known also that different cluster properties ex-
hibit different convergence with increasing cluster size.
Single-particle features, such as the local density of states at
the impurity in a given energy window, converge most
slowly. Integrated properties, such as the total energy, con-
verge more rapidly. Since the phase space for two-particle
interactions increases extremely fast with cluster size, many-
body properties such as the self-energy exhibit even more
favorable convergence properties. On the other hand, the
cluster Green’s function involves both single-electron and
many-electron features. Only the latter converge rapidly with
cluster size. These different behaviors also suggest that it is
useful to regard 3 ~3¢ as the key quantity derived within
ED/DMFT.

To extrapolate 3,,(iw,) to real frequencies it is first nec-
essary to remove the Hartree-Fock limit given by EZF(iwn)
=3, (iw,— ). The remainder can then be transformed to
real w by using the same extrapolation routine RATINT as for
the derivation of G,(w).3* As in the latter case, this routine
ensures that the correct continuous lattice self-energy is
found, rather than the discrete version appropriate for the
cluster self-energy. Since back-transformation of single-
particle features is avoided, and quasiparticle features are
calculated from Eq. (1) at real w, finer spectral details are
retained than when G,,(iw,) is transformed to the real axis.
Nevertheless, in the following section we show that both
schemes yield consistent spectra.

Before closing this section we note that the back transfor-
mation of the self-energy from Matsubara to real frequencies
should also be useful within QMC/DMFT. By viewing QMC
as a tool for evaluating ., the same separation of many-body
features from single-particle aspects can be achieved if qua-
siparticle spectra are evaluated from Eq. (1) at real w. Of
course, the statistical uncertainties associated with QMC
make the transformation of 3(iw,) more subtle than in the
present ED case. Nevertheless, after subtraction of the
Hartree-Fock limit from the real part of X, and after proper
normalization (determined by the asymptotic behavior of the
imaginary part), the use of the maximum entropy method*
on X(iw,), 2(7) should be more accurate than on G(iw,),
G(7), since the back transformation of single-particle fea-
tures is avoided.

III. APPLICATION TO Nag3C00,

We have applied the multiband ED/DMFT approach dis-
cussed in the previous section to investigate the correlation
induced charge transfer between 7,, bands of Na, 3C00,. The
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FIG. 1. (Color online) Subband self-energies 3,,(iw,) of

Nay3Co0O, as calculated within ED/DMFT for U=3.0eV, J
=0.75 eV at several temperatures. Solid (red) curves: 7=2.5 meV,
dashed (blue) curves: T=5 meV, dotted (magenta) curves: T
=10 meV. The Hartree-Fock limit is subtracted from Re X, (iw,,).

controversial small Fermi surface pockets arise from eé
bands that extend less than 100 meV above Ef. Since onsite
Coulomb energies are much larger than the #,, band width, it
is important to inquire whether correlations can lead to a
filling of the e, bands.

The single-particle properties for this Na concentration
were derived from a full-potential linear augmented plane
wave (LAPW) calculation, which was then fitted to a 3 X3
t,, tight-binding Hamiltonian including three neighboring
shells and ddo, ddm, and ddé matrix elements. Further de-
tails concerning the LDA band structure are given in Ref. 25.

For the combined #,, and e, bands of Naj;3;Co0O, U was
calculated to be about 3.7 eV.> For the 1, subbands a
smaller value might be appropriate to account for screening
via e, electrons. Since precise values of U and J are not
known, ED/DMFT calculations up to U=5 eV were carried
out, assuming J=U/4.

Figure 1 shows the Co a, and e; subband self-energies
3liow,) for U=3 eV and J=0.75 eV at T=10 meV. Hund
exchange is fully included, i.e., J'=J. As a result of the large
cluster size the spacing between excited states of the impu-
rity Hamiltonian is less than 0.001 eV. Although each impu-
rity orbital hybridizes only with three bath levels, the Cou-
lomb and exchange interactions at the impurity site induce
coupling between all bath levels, so that the excited states of
the total cluster are significantly more closely spaced than for
ny=4 in the single-band case. Thus, even at temperatures as
low as 7=2.5 meV finite-size effects are extremely small.
The slight differences of the real part of the self-energy are
related to the temperature dependence of the chemical poten-
tial.
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FIG. 2. (Color online) Subband Green’s functions G,,(iw,) of
Nay3Co0, for U=3.0eV, J=0.75¢eV, at several temperatures.
Solid (red) curves: T=2.5 meV, dashed (blue) curves: 7=5 meV,
dotted (magenta) curves: 7=10 meV.

In the case of the two-band model,'® finite-size effects for
n,=6 induce, even in the metallic phase, characteristic devia-
tions from linear ~iw, behavior of Im X, (iw,) at low fre-
quencies, indicating the presence of small pseudogaps
caused by the finite level spacing. For n,=8 the level spacing
is sufficiently small so that deviations disappear, and good
linear ~iw, behavior is obtained down to very low tempera-
tures. In the present three-band system with n,=12, the level
spacing is extremely small. As a result, the self-energies
shown in Fig. 1 exhibit excellent linearity at low iw,, dem-
onstrating that finite-size effects are very small.

The a, and e, quasiparticle weights Z,=1/[1
—-dRe, (w)/dw]=1/[1-Im 3,,(iwy)/w,] derived from
these self-energies are Z%ZO.SZ and Zeéx0.62, giving ef-
fective masses m:g ~1.9 and m:, =~ 1.6, respectively. The cor-

responding subband lattice Green’s functions are plotted in
Fig. 2 for the same parameters as in Fig. 1. As in the case of
the self-energies, the distributions are very smooth and ex-
hibit only very small deviations caused by finite-size effects.

Figure 3 shows the variation of the a, and e; occupations
with onsite Coulomb energy at 7=10 meV. Both isotropic
Hund exchange (J'=J) and Ising exchange (J'=0) are seen
to give nearly identical charge transfer from e;, to a, bands.
In the present ED/DMFT treatment this transfer is slightly
less pronounced than the one found within QMC/DMFT for
Ising exchange at higher 7,% but the trends in both DMFT
calculations are consistent. Thus, both DMFT treatments
suggest that local Coulomb correlations stabilize the eé
Fermi surface pockets. The overall topology of the Fermi
surface therefore remains the same as predicted by the LDA,
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FIG. 3. (Color online) Subband occupations Mg, and ne! (per
spin band) of Naj;Co0O, as a function of U, with J=U/4 at T
=10 meV. Solid (red) curves: Hund exchange J' =J, dashed (blue)
curves: Ising exchange J'=J. The corresponding QMC/DMFT re-
sults (Ref. 25) for T=62.5 meV are indicated by the symbols (+).
The total occupation is 2nag+4nf;=5.3.

i.e., correlation effects cannot explain the absence of the e;
pockets from the ARPES data.

Note that up to U=5 eV the subband occupations show
no sign of any reversal of charge transfer. The opposite result
found using the Gutzwiller approach?® in the U=, J=0
limit might therefore be a consequence of the approximate
treatment of dynamical correlations. In this scheme the true
complex frequency dependent self-energy is replaced by two
real coefficients representing the shift and narrowing of sub-
bands.

Figure 4 shows the frequency variation of the subband
self-energies, as obtained directly from 3,,(iw,) via the ex-

(a) o (eV)
oL U=3 eV

< 2 T=10 meV

9,

€

15

g 1+ \‘Ze -
0 il 1 1 v Jl/\L
8 6 4 2 0 2 4

(b)  (eV)

FIG. 4. (Color online) Subband self-energies 2, (w) of

Nag3Co0, at real frequencies, for the same parameters as in Fig. 1.
Solid (red) curves: a, bands, dashed (blue) curves: e; bands. (a)
Re 3, (w); (b) —-Im3,,(w). The Hartree-Fock limit is subtracted
from the real part.
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FIG. 5. (Color online) Quasiparticle spectra of (a) a, and (b) eg,
subbands of Naj3Co00,, calculated within ED/DMFT for the same
parameters as in Fig. 1. Solid (red) curves: spectra derived from
G, (w) via 3,,(w); dashed (blue) curves: spectra obtained by ex-
trapolating G,,(iw,) to real w; dotted (black) curves: single-particle
density of states.

trapolation routine RATINT. The Kramers-Kronig relations
between the real and imaginary parts of 2,,(w) are very well
satisfied. The striking asymmetry between the negative and
positive frequency regions is a consequence of the near fill-
ing of the subbands.

As pointed out in the previous section, quasi-particle
spectra at real frequencies can be derived by back transform-
ing the solid Green’s function G,,(iw,), or by first transform-
ing 3,,(iw,) and then applying Eq. (1) at real w. The com-
parison shown in Fig. 5 proves that both methods are
consistent, and that the latter scheme retains finer spectral
details originating from the single-particle Hamiltonian. For
instance, the e, spectrum obtained via Eq. (1) and %, ()
shows two peaks below Ep which evidently are the shifted
and broadened density of states features near 0.4 and 0.8 eV
below the Fermi level. Also, the peak close to Ey exhibits
some of the fine structure of the single-particle density of
states. These details are lost if the spectrum is instead de-
rived via back transformation of G, (iw,).

Interestingly, the a, spectrum has a steep positive slope at
Ep, while the eé spectrum has a strong negative slope. This
holds true for both methods of evaluating the real frequency
spectra. Also, the a, quasiparticle spectrum exhibits a pro-
nounced minimum at about 0.1 eV below Ey. This feature
exists already in the single-particle density of states and is
evidently not obliterated by correlation effects.

Both subbands exhibit the usual correlation induced band
narrowing, quasiparticle damping, and incoherent spectral
weight in the region below the bottom of the bands, associ-
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FIG. 6. (Color online) Cluster spectra of (a) a, and (b) e;, orbit-
als of Naj3Co00,, as calculated from Eq. (8). Solid (red) curves:
—ﬁ Im Gf,ll(w+i5) with 6=25 meV; dotted (black) curves: single-
particle density of states.

ated with Hubbard peaks. Qualitatively, these spectra agree
with the ones derived previously using the QMC/DMFT and
the maximum entropy method.?>2’

For comparison with the lattice spectra we show in Fig. 6
the cluster spectra obtained by evaluating Eq. (8) at w+ié
instead of iw,. Because of the large cluster size, the level
spacing between excited states in the metallic phase of
Na;Co0, is less than 1073 eV. Thus, with only a minor
broadening these cluster spectra look very smooth indeed.
The spectral weight is located mainly in the #,, band region,
and there is clear evidence of incoherent weight associated
with Hubbard bands. Both the a, and e 5’, spectral distributions
exhibit three main features in the band region, as in the case
of the bare density of states. Nevertheless, these features are
much narrower than in the corresponding lattice spectra
shown in Fig. 5. This is not surprising since, as pointed out
in the previous section, the cluster Green’s function depends
on single-particle and many-body aspects. Only the latter,
represented by the self-energy, converge rapidly with cluster
size. Thus, increasing the artificial broadening of the cluster
spectra does not yield the lattice spectra. Cluster spectra
would resemble more closely those of the solid only if 7, is
significantly increased. To analize photoemission spectra of
the solid material, Eq. (1) should therefore be used at real w,
rather than Eq. (8).

Transforming the subband self-energies 3, (w) and
Eeé(w) to the t,, basis, they can be used to evaluate the

momentum dependence of the quasiparticle band structure,
as indicated in Eq. (18). This is shown in Fig. 7 for the I'K
and I'M symmetry directions of the hexagonal Brillouin
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FIG. 7. (Color online) Broadened (red) distributions: dispersion
of quasiparticle bands of Nay3CoO, along MI" and I'K for T
=10 meV. Solid (black) curves: LDA bands derived from H(K).

zone. The e’ Fermi surface pockets are associated with the
flat bands reaching just above Er along I'K. The maximum
of this band is shifted down, but the crossing of Ej occurs
slightly farther away from the maximum, leading to a weak
enlargement of the hole pocket. Conversely, the diameter of
the large a, pocket centered at I' is slightly reduced.

These results demonstrate that, although local correlation
effects induce band narrowing and broadening, they do not
alter the basic dispersion of the #,, bands of Naj;Co0,. In
particular, it does not seem possible to interpret these bands
in terms of a single-band model, with a flat a, band limited
to within a very narrow energy range near E.233738

Although the consistent description of correlation effects
via ED and QMC/DMFT is encouraging, we point out that
both schemes so far focus on single-site correlations and ig-
nore spatial fluctuations. At present it is not known how im-
portant these effects might be in a hexagonal planar lattice
geometry and whether they might modify the topology of the
Fermi surface. In view of the small size of the e hole pock-
ets, related to the fact that these bands reach only about
100 meV above the Fermi level, this problem should be in-
vestigated, for instance, via a suitable cluster extension of the
present single-site DMFT treatments. The momentum varia-
tion of the subband self-energies in Naj;Co0O, is currently
under investigation and will be discussed in a future
publication.?

IV. SUMMARY AND OUTLOOK

We have applied ED/DMFT to investigate the correlation
induced charge transfer between the 7,, bands in Naj3C00,.

PHYSICAL REVIEW B 75, 045125 (2007)

Since previous QMC/DMFT studies of this problem were
limited to Ising exchange the role of full Hund’s coupling
had remained unresolved. The ED calculations show that the
charge transfer follows the same trend for both Hund and
Ising exchange: The eé’, bands donate some of their charge to
the a, bands, i.e., the e; Fermi surface hole pockets are
slightly enlarged. These ED results fully confirm the trend
obtained previously within single-site QMC/DMFT for Ising
exchange. Thus, local Coulomb correlations cannot explain
the absence of these pockets from the ARPES data.

The results presented in this paper suggest that ED/DMFT
is a useful method for the study of strongly correlated three-
band systems. By exploiting the sparseness of the impurity
Hamiltonian the cluster size n,=12 can now be investigated,
without loss of accuracy, with about the same computational
effort as n;=8 using full diagonalization. The large cluster
size ensures that the level spacing among excited states is
very small, so that finite-size effects are greatly reduced.

With this improvement, ED/DMFT can now be regarded
as complementary to QMC/DMFT. We point out, however,
that in comparison to standard QMC/DMFT based on the
Hirsch-Fye algorithm, the ED/DMFT approach is free of
sign problems. Thus, complete Hund exchange and large on-
site Coulomb interactions can be treated. In addition, very
low temperatures can be reached. In principle, results for 7
—0 can also be generated within ED/DMFT. This limiting
region, however, requires special care since certain system
properties might be sensitive to remaining finite-size effects
even for n,=12.

We have also demonstrated that ED/DMFT provides con-
tinuous quasiparticle spectra and self-energies of the ex-
tended solid at real frequencies. Moreover, by considering
the self-energy as the principal quantity derived within
DMFT, a clear separation of single-electron and many-body
aspects in spectral distributions can be achieved.

In the future it should be valuable to apply ED/DMFT to
other multiband materials that have so far been studied only
within Ising exchange and QMC/DMFT, but where full
Hund’s coupling is crucial. Also, by exploiting the fact that
the present scheme can easily be parallelized, much larger
cluster sizes are feasible. This opens the path for the study of
various other material properties, including nonlocal effects.
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