000059081 001__ 59081
000059081 005__ 20180211164319.0
000059081 0247_ $$2DOI$$a10.1016/j.susc.2006.11.009
000059081 0247_ $$2WOS$$aWOS:000244372900028
000059081 037__ $$aPreJuSER-59081
000059081 041__ $$aeng
000059081 082__ $$a540
000059081 084__ $$2WoS$$aChemistry, Physical
000059081 084__ $$2WoS$$aPhysics, Condensed Matter
000059081 1001_ $$0P:(DE-HGF)0$$aRose, V.$$b0
000059081 245__ $$aGrowth of Co nanoparticles on a nanostructured theta-Al2O3 film on CoAl(1 0 0)
000059081 260__ $$aAmsterdam$$bElsevier$$c2007
000059081 300__ $$a786 - 791
000059081 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000059081 3367_ $$2DataCite$$aOutput Types/Journal article
000059081 3367_ $$00$$2EndNote$$aJournal Article
000059081 3367_ $$2BibTeX$$aARTICLE
000059081 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000059081 3367_ $$2DRIVER$$aarticle
000059081 440_0 $$05673$$aSurface Science$$v601$$x0039-6028$$y3
000059081 500__ $$aRecord converted from VDB: 12.11.2012
000059081 520__ $$aWe have investigated the growth of Co nanoparticles on theta-Al2O3/CoAl(100) by means of Auger electron spectroscopy (AES), highresolution electron energy loss spectroscopy (EELS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Due to Volmer-Weber growth, Co forms particles with a mean diameter of approximately 2.5 nm and height of 0.8 nm. Even on the entirely covered oxide, there is no Ostwald ripening and Co particles stay structurally isolated. The nanoparticles exhibit a small size distribution and tend to form chains, as predetermined by the streak structure of the oxide template. For sufficient high coverages Co-core-CoO-shell nanoparticles may be evidenced, which is explained as a result of surfactant oxygen. The nanostructured particles may open the door to numerous applications, such as in catalysis and magnetoelectronic applications, where large areas of ordered nanodots are desired. (c) 2006 Elsevier B.V. All rights reserved.
000059081 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000059081 588__ $$aDataset connected to Web of Science
000059081 650_7 $$2WoSType$$aJ
000059081 65320 $$2Author$$aAuger electron spectroscopy (AES)
000059081 65320 $$2Author$$aelectron energy loss spectroscopy (EELS)
000059081 65320 $$2Author$$alow energy electron diffraction (LEED)
000059081 65320 $$2Author$$ascanning tunneling microscopy (STM)
000059081 65320 $$2Author$$acobalt
000059081 65320 $$2Author$$aaluminum oxide
000059081 65320 $$2Author$$acobalt oxide
000059081 65320 $$2Author$$aclusters
000059081 7001_ $$0P:(DE-HGF)0$$aPodgurski, V.$$b1
000059081 7001_ $$0P:(DE-Juel1)VDB5790$$aDavid, R.$$b2$$uFZJ
000059081 7001_ $$0P:(DE-Juel1)VDB5400$$aFranchy, R.$$b3$$uFZJ
000059081 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/j.susc.2006.11.009$$gVol. 601, p. 786 - 791$$p786 - 791$$q601<786 - 791$$tSurface science$$v601$$x0039-6028$$y2007
000059081 8567_ $$uhttp://dx.doi.org/10.1016/j.susc.2006.11.009
000059081 909CO $$ooai:juser.fz-juelich.de:59081$$pVDB
000059081 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000059081 9141_ $$y2007
000059081 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000059081 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x1
000059081 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x2$$z381
000059081 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x3
000059081 970__ $$aVDB:(DE-Juel1)93027
000059081 980__ $$aVDB
000059081 980__ $$aConvertedRecord
000059081 980__ $$ajournal
000059081 980__ $$aI:(DE-Juel1)PGI-3-20110106
000059081 980__ $$aI:(DE-Juel1)VDB381
000059081 980__ $$aI:(DE-82)080009_20140620
000059081 980__ $$aUNRESTRICTED
000059081 981__ $$aI:(DE-Juel1)PGI-3-20110106
000059081 981__ $$aI:(DE-Juel1)VDB381
000059081 981__ $$aI:(DE-Juel1)VDB881