001     59081
005     20180211164319.0
024 7 _ |2 DOI
|a 10.1016/j.susc.2006.11.009
024 7 _ |2 WOS
|a WOS:000244372900028
037 _ _ |a PreJuSER-59081
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Rose, V.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Growth of Co nanoparticles on a nanostructured theta-Al2O3 film on CoAl(1 0 0)
260 _ _ |a Amsterdam
|b Elsevier
|c 2007
300 _ _ |a 786 - 791
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Surface Science
|x 0039-6028
|0 5673
|y 3
|v 601
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We have investigated the growth of Co nanoparticles on theta-Al2O3/CoAl(100) by means of Auger electron spectroscopy (AES), highresolution electron energy loss spectroscopy (EELS), low energy electron diffraction (LEED) and scanning tunneling microscopy (STM). Due to Volmer-Weber growth, Co forms particles with a mean diameter of approximately 2.5 nm and height of 0.8 nm. Even on the entirely covered oxide, there is no Ostwald ripening and Co particles stay structurally isolated. The nanoparticles exhibit a small size distribution and tend to form chains, as predetermined by the streak structure of the oxide template. For sufficient high coverages Co-core-CoO-shell nanoparticles may be evidenced, which is explained as a result of surfactant oxygen. The nanostructured particles may open the door to numerous applications, such as in catalysis and magnetoelectronic applications, where large areas of ordered nanodots are desired. (c) 2006 Elsevier B.V. All rights reserved.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Auger electron spectroscopy (AES)
653 2 0 |2 Author
|a electron energy loss spectroscopy (EELS)
653 2 0 |2 Author
|a low energy electron diffraction (LEED)
653 2 0 |2 Author
|a scanning tunneling microscopy (STM)
653 2 0 |2 Author
|a cobalt
653 2 0 |2 Author
|a aluminum oxide
653 2 0 |2 Author
|a cobalt oxide
653 2 0 |2 Author
|a clusters
700 1 _ |a Podgurski, V.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a David, R.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5790
700 1 _ |a Franchy, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB5400
773 _ _ |a 10.1016/j.susc.2006.11.009
|g Vol. 601, p. 786 - 791
|p 786 - 791
|q 601<786 - 791
|0 PERI:(DE-600)1479030-0
|t Surface science
|v 601
|y 2007
|x 0039-6028
856 7 _ |u http://dx.doi.org/10.1016/j.susc.2006.11.009
909 C O |o oai:juser.fz-juelich.de:59081
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IBN
|k IBN-3
|l Grenz- und Oberflächen
|0 I:(DE-Juel1)VDB801
|x 1
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 2
|z 381
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)93027
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-3-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21