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Interactions of parametrically driven dark solitons. I1. Néel-Bloch interactions
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The interaction between a Bloch and a Néel wall in the parametrically driven nonlinear Schrodinger equation
is studied by following the dissociation of their unstable bound state. Mathematically, the analysis focuses on
the splitting of a fourfold zero eigenvalue associated with a pair of infinitely separated Bloch and Néel walls.
It is shown that a Bloch and a Néel wall interact as two classical particles, one with positive and the other one

with negative mass.
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I. INTRODUCTION

In the preceding publication [1] we started our analysis of
the interactions between dark solitons of the parametrically
driven nonlinear Schrodinger (NLS) equation:

1 ;
iaT«p+5a§«P+qf—|~P|2\1f=hxlf —iy¥. (1)

This equation arises in a wide variety of physical contexts;
see [1] for references. In Eq. (1), & is the strength of the
parametric driving and vy is the damping coefficient. In the
nondissipative limit, when y=0, the equation has two coex-
isting stable soliton solutions, the Bloch and the Néel wall.
In [1], we considered forces existing between two Bloch
walls and between two Néel walls. The present work com-
pletes the analysis by classifying the Néel-Bloch interac-
tions. The understanding of this nonsymmetric situation re-
quires a mathematical formalism different from the one used
in [1]; this justifies the need for a separate treatment. Since
the Bloch wall does not exist for y# 0, we consider here the
nondissipative case only. This is another distinction from
Ref. [1].

Our analysis of the interaction between Bloch and Néel
walls will be based on the study of linearized perturbations
about their (unstable) bound state. Mathematically, this
analysis reduces to the construction of eigenfunctions of a
Schrodinger-like operator, acting in the space of vector-
functions, with the potential consisting of two well-separated
nonidentical potential wells. When the two wells are infi-
nitely far apart, there are four zero eigenvalues in its spec-
trum, with two associated eigenfunctions. As the wells (pro-
duced by the Bloch and Néel walls) are moved closer
together, the degeneracy is partially lifted, with only two
eigenvalues remaining at the origin. The question here is
whether the two nonzero eigenvalues move onto the imagi-
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nary axis—which would be the case of stability, or onto the
real axis—in which case the bound state is unstable. We use
matched asymptotic expansions to show that the second is
the case and construct eigenfunctions associated with the two
real eigenvalues.

The eigenfunction associated with the positive, unstable,
eigenvalue contains the entire information on the character
of interaction of two walls. We demonstrate that the outcome
of the Néel-Bloch interaction depends on their left-right ar-
rangement and the chirality of the Bloch wall. A Néel wall
and a right-handed Bloch wall placed on its right will be
moving in the same direction. If, however, we place a left-
handed Bloch wall on the right of the Néel, the two walls
will move in opposite directions—towards or away from
each other, depending on the initial perturbation. The right-
handed Bloch wall (on the left) and the Néel wall (on the
right) will move in opposite directions, while a pair involv-
ing the left-handed Bloch on the left of the Néel, will move
colinearly.

After the eigenfunctions associated with two opposite real
eigenvalues have been constructed, the evolution of an arbi-
trary initial condition close to a pair of well-separated Bloch
and Néel walls is not difficult to predict. Treating this initial
condition as a perturbed Bloch-Néel bound state, its evolu-
tion will be determined by the projection of the perturbation
on the bubble’s unstable eigendirection. We illustrate this
general approach by considering an example of initial con-
dition in the form of a product of the Bloch and Néel wall.

Usually one tries to understand the interaction of solitons
as interaction of pointlike particles; the particle description is
physically appealing and mathematically lucid. We will show
that a Bloch and a Néel wall can be treated as two classical
particles. However, the interaction between these two par-
ticles is anomalous in the sense that the Bloch wall being
attracted to the Néel wall does not necessarily imply the
reciprocal attraction of the Néel to the Bloch. This anomaly
can be understood by considering the Néel wall as a particle
with negative mass. The “wrong” mass sign arises very natu-
rally if one recalls what the Néel wall really is: a localized
depression, a patch of low density moving over a high-
density background. The only reason why this property was
not fully appreciated before is because earlier studies focused

©2007 The American Physical Society



I. V. BARASHENKOV AND S. R. WOODFORD

on symmetric, Néel-Néel, interactions, which are, of course,
nonanomalous.

The outline of this paper is as follows. In Sec. II we
introduce traveling Bloch and Néel walls, and describe the
Bloch-Néel bound state. Section III contains the main math-
ematical result of this paper, the asymptotic analysis of the
splitting of the degenerate zero eigenvalue. In the next sec-
tion (Sec. IV) we interpret the resulting eigenfunctions in
terms of motions of the constituent walls. In Sec. V we de-
scribe how the eigenfunctions can be used to classify the
interaction of a pair of Bloch and Néel walls and apply this
approach to a characteristic example. Finally, the main re-
sults are summarized in Sec. VI where we also interpret the
interaction of the walls as interaction of opposite mass-sign
particles.

II. MOVING BLOCH AND NEEL WALLS

AND THE BLOCH-NEEL COMPLEX

In this paper, we restrict ourselves to the undamped situ-
ation, y=0. As in [1], we let

W(X,T)=iAp(x,1), x=AX, t=AT, (2)
with
A= \e"m. (3)
Equation (1) becomes
1 1 h o,
i+ S = [P+ 50+ 597 =0. 4)

This is the form of the parametrically driven NLS that will
be used in this paper. The stable background solutions of Eq.
(4) are == 1. Without loss of generality we assume that
h>0.

The two topological solitons of Eq. (4) were introduced in
Ref. [1]. One is the Néel wall [2-6]:

thy(x) = — tanh(x). (5)

Note that we are introducing the Néel wall differently from
[1], with an extra negative sign in front of the tanh. This is
done for later convenience. [In Ref. [1], we would refer to
the solution (5) as an antiwall.]

The second topological soliton is the Bloch wall [4,5,7,8]:

p(x) = tanh(Bx) = i\'1 — B sech(Bx), (6)

VA? - 1 h
B=2 =2 :
A 1+h

Equation (6) with the positive sign in front of the imaginary
part describes the right-handed Bloch wall while in the case
of the negative sign, the wall is said to be left-handed (see
[1] for details).

The Néel wall exists for all #>0 whereas the Bloch wall
exists only for Al< %, ie., for 0<h< % Since we are inter-
ested in the Bloch-Néel interaction, the latter will be our

region of consideration. Both the Bloch and Néel walls are

where
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FIG. 1. The bifurcation diagram for the stationary and traveling
Bloch and Néel walls with A <§ (adapted from Ref. [9]). The mo-
mentum (8) is used as the bifurcation measure. The solid curve
indicates stable and dashed curve unstable solutions. Note that the
mass of the Néel wall (defined as dP/dv) is opposite to the mass of
the Bloch wall. In this plot, £=0.05.

stable in their entire regions of existence, 0<h<% and h
>0, respectively [9].

The Bloch and Néel walls can be continued to nonzero
velocity for all & values for which they exist [9]. The moving
walls of the form ¢=y(x—vt) are found as solutions of the
ordinary differential equation

; l 2 i ﬁ *_O 7
_lv¢x+2$xx_|¢| ¢+A2¢+A2¢ =Y. ( )

The solution obtained by the continuation from the stationary
Néel wall ¢y(x) will be referred to as the “moving Néel
wall” and denoted y(v;x). In a similar way, the solution
obtained by continuing #3(x) in v will be called the “moving
Bloch wall”; to be denoted (v ;x). The traveling walls are
stable for all velocities v [9].

An important characteristic of solutions of Eq. (4) is their
field momentum:

- J (.~ ). (®)

The momentum is conserved: dP/dt=0. When we take the
complex conjugate of i(x,t), the associated momentum
changes its sign: P[4]=—P[4]. Consequently, the momenta
of two stationary Bloch walls with opposite chiralities are
opposite. The right-handed Bloch wall has negative momen-
tum, while the left-handed wall’s momentum is positive. The
momentum of the stationary Néel wall is, naturally, equal to
zero. Figure 1 shows the momenta of stationary and traveling
Bloch and Néel walls. These will be denoted Pz and Py,
respectively:

Py =Pg(v) = P[yp(vix)], (9a)

026605-2



INTERACTIONS OF.... II. NEEL-BLOCH...

Py=Py(v) = Plgn(v:x)]. (9b)

According to Fig. 1, when the right-handed Bloch wall is
continued into the region v >0, it transforms into the moving
Néel wall. In a similar way, when we path-follow the left-
handed Bloch wall to large negative velocities, the corre-
sponding branch turns into the branch of traveling Néel
walls. Thus the classification of moving solutions into Bloch
and Néel walls is only sensible for sufficiently small v; for
higher velocities, there is no qualitative difference between
the two types of walls.

One more observation with regard to Fig. 1 concerns par-
ticle properties of the two walls. While the stationary Bloch
wall has positive mass, mg=(dPg/dv),-y>0, the mass of
the Néel wall is negative: my= (dPy/dv),-,<0. This prop-
erty will be crucial for the particle interpretation of the Néel-
Bloch interaction (Sec. VI).

In addition to the Bloch and Néel domain walls, Eq. (4)
possesses nontopological solitons. One such solution, arising

for h=ll—5, is well-known [7,10-12]:

3 o X 3i by by
=1-—sech”| = | £ — tanh{ — |sech|{ — |. (10)
2 2 2 2 2

Recently, it has become clear that this solution is a member
of a one-parameter family of solutions which exist for all &
<§ [13]. For each h, this family has the following analytical
expression:

=", (11a)
where
p=1-eh2B_ 20428 4 1420 (11b)
g=2(1+B)e?2(1 —e?), (11c)
and
D=1+eh*2B 4 202428 4 ob1+242 (11d)

In Eq. (11), o is a sign factor: o=+1; the exponents ¢, ¢,
are

¢1=2(x+5),
and B is defined by

b, =B(x—5),

B =tanh .

The solution Eq. (11) describes a bound state, or a complex,
of a Bloch and a Néel wall, with the parameter s character-
izing the distance between the centers of the two walls [13].
The choice s>0 corresponds to the Bloch wall on the right
of the Néel wall; for s <0, the Bloch wall is on the left. The
solution (10) corresponds to s=0 (and #=1/15). The sign
factor o determines the chirality of the Bloch wall bound in
the complex: o=1 implies that the Bloch wall is left-handed,
while o=-1 identifies a complex with a right-handed Bloch
wall.
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Equation (11) can also be interpreted as a bubble of one
phase (¢y/=—1) embedded in a background of a different
phase (=1); we will frequently be referring to this solution
as a “bubble” [14].

The analysis of the bound state Eq. (11) will provide the
understanding of the Bloch-Néel interaction.

III. SPLITTING OF THE DEGENERATE ZERO MODES
A. Stability problem for the complex

To study the stability of the bubble Eq. (11), as well as to
explore the phase space in the neighborhood of this solution,
we linearize Eq. (4) in the small perturbation Sy(x,r). As-
suming the time dependence of the form &y(x,r)=[u(x)
+iw(x)]eM results in the eigenvalue problem

He=Ng, (12)

where ¢ is a 2-vector made of the real and imaginary parts of
the perturbation:
. (u
¢ = b
w

J is a skew-symmetric matrix

J (0 - 1) (13)
\1 o/’
and H is a Hermitian operator:
; 3R*+I7-1 2RI
H=——d+ 2-A?

2 2RI R?+37 - ——

A
(14)

In the last equation, / stands for the 2 X 2 identity matrix, and
R and 7 are the real and imaginary parts of the solution Eq.
(11): ¢,=R(x)+iZ(x). In what follows, we restrict our atten-
tion to the bound state with the Néel wall on the left of the
Bloch wall [s>0 in Eq. (11)]. The results for s <0 will be
recovered by exploiting the symmetry y(—x;—s)=1"(x;s) of
the solution Eq. (11). Since the dynamics described by Egq.
(4) are invariant under the reflection x— —x, the evolution of
a bubble with s=57<<0 will follow the same pattern as the
evolution of the complex conjugate bubble with positive
§==50.

For all values of s, the continuous spectrum of the opera-
tor H lies on the imaginary axis, with [Im \| > B, and does
not give rise to instabilities. For s=o, the separation of the
Bloch and Néel wall in the bubble is infinite and so we have
essentially two independent stationary (but potentially mo-
bile) walls, each having two zero eigenvalues in its linear-
ized spectrum. One of these stems from the translation in-
variance while the other one is associated with velocity
boosts of the corresponding wall. For finite s, only two of the
four zero eigenvalues remain in the spectrum: one pertaining
to the translation invariance of the complex as a whole and
the other one associated with variations of the interwall sepa-
ration. In this section we compute, perturbatively, the arising
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nonzero eigenvalues (and hence classify the stability of the
bubble). We also construct the eigenfunctions associated
with the real eigenvalues—these will provide insight into the
evolution of the unstable bound state and nearby initial con-
ditions.

The lifting of the degeneracy of a repeated eigenvalue of
the scalar Schrodinger operator with the potential comprising
two identical potential wells with large separation is dis-
cussed in the classical textbook [15]. This analysis is not
helpful in our case, unfortunately, for three reasons: (i) our H
operates on vector, not scalar, functions; (ii) the potential
wells formed by the Bloch and Néel walls are not identical;
and (iii) the analysis in [15] postulates a particular form of
the wave function on symmetry grounds, rather than deriving
it within some perturbation formalism—as a result, the gen-
eralization to the vector nonsymmetric case is not straight-
forward.

Our treatment will be based on expanding the eigenfunc-
tion in the asymptotic series near the cores of the two walls
and matching the resulting expansions in the overlap region
x~ 0. This approach builds on the asymptotic procedure used
for the study of the stability of the traveling dark soliton

[16].

B. Left expansion

We will do all our calculations for the case s >0 (i.e., for
the Bloch wall on the right of the Néel wall). Furthermore,
we will restrict ourselves to the right-handed Bloch wall only
(o0=-1). The other three possible combinations of o and
sgn(s) will be commented upon at the end of Sec. III.

First, let x € (=, x,), where x5>0 is a fixed value inde-
pendent of s (so that x,<s). In this region the real and imagi-
nary parts of the bubble solution Eq. (11) can be written as

sinh[2(§- B)] QBEP) L

R =-—tanh £+
anh & cosh? &
Z=2(tanh - B)ePE2H ¢ ..., (15)
where
E=x+s5+p, (16)

and we have dropped terms of order ¢*#(¢-2-8) and smaller.
Equations (15) can be seen as expansions of two functions of
&, defined for —o<&<o, in powers of e=e 285 Accord-
ingly, the operator H in Eq. (14) expands as

H=Hy+eHP+HD + - (17)

Here, Hy is the unperturbed linearized operator of the Néel
wall centered at £=0, i.e., Eq. (14) with R=—tanh ¢ and
Z=0. Guided by the results of (our own) numerical analysis,
we assume that \ is of order &:

A= )\08.

(As we will see, this asumption leads to a self-consistent
perturbation scheme.) This implies that the eigenfunction ¢
in the eigenvalue problem (12) can also be expanded in pow-
ers of &:
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G = a9 + 6, (D + 25O+ . (18)

Here (ZI’\,E (9§lZN, and zZN= (Ry»Zy)=(—tanh £,0). The coeffi-
cient a is arbitrary at this stage [a=0(1)].

Substituting Eqgs. (17)—(18) into Eq. (12) and equating co-
efficients of like powers of &, yields, at order &':

Hy +aHy Yy = akeJ . (19)

To solve Eq. (19), we note that ¢ is a generalized eigenvec-
tor associated with the zero eigenvalue:

HN‘ZN == 11/71,\/ (20)

Here iy is considered as a solution of the form =(x
—vt) of Eq. (7), while the overdot indicates differentiation

with respect to velocity v (and not time): lZNE(au‘ZN)u:o-
(This will be our convention until the end of Sec. III.) Also,
we know that ¢, = d,4, and iy, are zero modes of the per-

turbed operator (14) where @b(x)=(R,I) is the bubble solu-
tion Eq. (11), and —0<x<oo, Using Eq. (15), we write

= ‘/11,\/+8()?1+)71)+82()?2+)72)+ e,

Oy = Py + (X =) + (=) + -, (21)
where

X1(8) = 25EP) sech?s (? ) , (22)
7,(8€) = 2BeP P (tanh ¢ - B)((l) ) , (23)

. o d sinh[2(£— ﬁ)](l)

— 2B(¢-p) 1= MU

X2(é)=e di ool o) (24)

o apepSinh[2(6- B)] (1 )
y2(§) =2Be “eosn’t o)’ (25)

Substituting expansions (17) and (21) into HIZ/,';Hc?SzZ/b
=0, the order &' gives a useful identity:

Hyx: + Hy = 0; (26)
we also note that
Hyy1 =0. (27)

Using Egs. (20) and (26), we can solve Eq. (19) in the class
of functions bounded as |&| — oo

@1(&) =—akgiy + ax; .

The emerging vector-function ¢=ayn+e@,+- -+ decays,
exponentially, both as é—— and é— +% and hence it is
intuitively clear that it cannot describe the behavior of the
eigenfunction of the bound state in the region under consid-
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eration (x<<0). Indeed, the eigenfunction should include a
term growing as {— +% and representing the tail of the
Bloch wall situated in the region x> 0. Therefore we need to
add to ¢ a solution of the equation H,y=0 which decays as
&— —oo but grows as £€— oo, This solution is already available
[see Eq. (27)]; it is given just by Eq. (23). Note that the other
two linearly independent solutions of equation H,y=0 (other

than ¢}, and y,) are growing as £— —o; these are clearly not
acceptable for our purposes.

Finally, the full order-e' perturbation is —a)uZN+as)?1
+C,y;, and the eigenfunction ¢ becomes, in the region x
<xo (“left region”):

$(&) = agy— a\ghy +asX, + C13 + O(),  (28)

with y, as in Eq. (23) and the constant C, to be found from
the matching condition at a later stage. (Here we are implic-
itly assuming that this constant will be of order e. If, how-
ever, it is of order £ or higher, the term Cy, will only appear
at higher orders of the expansion.)

C. Right expansion

Now let x € (—xg,%). (We remind that x,>0 is a fixed
value independent of s; x,<s.) Here, the real and imaginary
parts of the bubble are given by

sinh(2B7)

o= 2(H2s) L
e +
cosh’(By— p)

R =tanh(Bnp- B) -

__sechg 2 cosh(B7)
" cosh(By— ) B cosh’(By— B)

e~20m29) o ...

(29)
where
nN=x-s (30)

and we have dropped terms of order e=*(7*>)_ Equations (29)
can be seen as expansions of the functions R(7) and Z(7%)
(with —0 < <) in powers of u=e™. Accordingly, the
operator H expands as

H=Hp+puHY + P HP +--- . (31)

Here, Hp is the unperturbed linearized operator of the Bloch
wall centered at 7=8/B, Eq. (14) with Rg=tanh(B7- )
and Zz=sech B sech(B7— B). Note that the expansion param-
eter u is, in general, incommensurate with & and hence it is
not a priori obvious what the expansion of the eigenfunction

¢(n) will be. Letting (,_0)(7})=I,Z;3+$, where ¢ has some order
of smallness, and substituting into Eq. (12), we get

Hy@ = Noe iy (32)

where we have dropped terms of order u because w is
smaller than & (and even &?). From Eq. (32) it is clear that
the leading-order correction to the translation mode of the
free-standing Bloch wall is of order £ (and not u or u'/? as
one might have been tempted to think).
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Recalling that 1,713(77)5((9,)(23)%0 is a generalized eigen-
vector associated with the zero eigenvalue of the free-
standing Bloch wall:

Hphp=- J’ﬁzlg»

the localized solution of Eq. (32) is given by ¢=—\ 123, and
so (the localized part of) the eigenfunction ¢ can be written
as

() = biffy —~ Nbi + O o), (33)

where b is an arbitrary constant of order 1.

The eigenfunction (33) decays, exponentially, as 7— —oo
and therefore cannot represent the (x>>0)-behavior of the
eigenfunction of the bound state. (For there is no connection
of such an eigenfunction to the region x <0 where the Néel
wall is located.) In order to obtain the correct behavior, we
need to add a solution of equation Hzz=0 which decays as
n— +% but grows as 7— —%. The equation has only two
solutions that decay as 7— ; one is the translation mode

diy = (Rp.Tp)

tanh(Bn - B) )

— 2 - -
N (B sech”(By - B), — B sechf cosh(By— B)

(34)

and the other one can be found by expanding the exact null

eigenfunctions of the bubble, ¢, = 3,4, and di;, in powers
of w (in the region x> -x,). We have

¥y = g+ u(Z, - 6) + O(u?),

iy =y + plZ, + 6) + O(ud), (35)
where
. 20727 sinh(2B7)
zi(m) = 2—< (36)
cosh”(Bn— B) \2 cosh(B7)
and
- e d
0,(n) = ——(277)). 37
\(7) 3 dn(e Z1) (37)

Substituting Egs. (31) and (35) into H ¢, =Hd,¢;,=0, we ob-
tain Hpz;=0 which means that Eq. (36) gives exactly the
solution we are looking for.

Finally, the correct behavior of the eigenfunction ¢ in the
region x>—x, (the “right” region) is given by

@&(1) = by — Nbifiy + DZ; + O(&?), (38)
where z; is given by Eq. (36) and the constant D is to be
fixed later.

D. Asymptotic matching

Equations (28) and (38) give the leading terms in the
asymptotic expansion of the eigenfunction ¢ in the regions
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x<xy and x>-x,, respectively. Before proceeding to the
next order of the expansion (which will give us the eigen-
value \), we need to make sure that the two expansions
match in the overlap region —xy<x<<x.

In what follows, we will need the asymptotic behaviors of

the generalized eigenvectors 1ZN and IZ/B. The solution lZN of
Eq. (20) can be constructed in quadratures. The |&— o
asymptotic behavior is straightforward from the quadrature:

ES 0
(&) — — p(B + 1)e-‘9"f(1 ) : (39)

where the factor

p= m[_x sech’& (B — tanh §) ¢ d¢

1 7B/2

= >0. 40
1 — B%sin(wB/2) (40)

The n— o asymptotics of the solution 123 of equation
HB@B:—J (Z/é are given by

N u,e BB
‘/’3(77)_’ Wie_z‘Bn—ﬂ‘ 5 (41)
where the constants u, and w, are easily found by direct
substitution:

__ 4B(1+B)e™” 8B
u,= +——" -, +

* 4- B T 4op

Using Eq. (39), the (¢§— +°) asymptotic behavior of the
expansion (28) is given by

. (_ 4ae—2(x+s+ﬁ) ) )\( 0 )
+
P — 0 a p(B + 1)e—B(x+s+B)

0 0
e—2(x+s+ﬁ) + Cl 23(1 _ B)eB(x+s) ’
(42)

+ 8aseB(x+s)<

where we have substituted x+s+ 3 for each & The (77— —»)
asymptotic behavior of the expansion (38) is

4Be?BU-5)-28 u_eBG=s)-B
¢o—b 21+ B)e_,gBeB(x—s)—p —-\b . o2B0-9-26
_ 46—2(x—s)—25
+D{ ¢ 26928 |- (43)

Here we have replaced each # with x—s.
Equating coefficients of the exponential ¢?* in the bottom
rows of Egs. (42) and (43) determines the constant C:

C,=be. (44)

Equating coefficients of the exponential ¢~>* in the top rows

of Egs. (42) and (43) and the exponential e®~2* in the bot-
tom rows, fixes the constant D:

PHYSICAL REVIEW E 75, 026605 (2007)

D=apu. (45)

(Both top and bottom rows lead to equivalent equations, so
only one parameter is fixed.) Since D turns out to be smaller
than \ and even A2, we can drop the term Dz, from ¢, and
@2-

There is a term in Eq. (42) which does not have a match-
ing partner in Eq. (43), and the other way around, there are
terms in Eq. (43) which do not have counterparts in Eq. (42).
Consider, first, the term proportional to e~5* in Eq. (42). This
exponential does not have a partner in Eq. (43); however, we

can add a matching term —aX ¢n(€) with é=n+2s+ 8 to the
expansion (38). This term will be of order e*5* for »~0 and
hence will arise only at the next, &2—, order of the expansion.
In a similar way, the exponentials ¢5* in the top row and %5~
in the bottom row of Eq. (43) do not have counterparts in the
expansion (42). This can be taken care of by adding the term

—b\ifg(m) with p=£&-2s— B to Eq. (28). The top and bottom
rows of this term will appear only at the order £ and &3,
respectively. Finally, the last unmatched exponential ¢?5* in
the top row of Eq. (43) will acquire a matching partner if we
add &%y, to Eq. (28), where y,(&) is given by Eq. (25).

E. Secular equation

To identify the constants a, b and the eigenvalue N we
proceed to the next order of the perturbation expansion. As
before, we treat the regions x<<0 and x>0 separately. For
—00 < x <X, the order &> gives

Hygy + HY @)+ a1 ¥y =Nl &y, (46)

where ¢, is as in Eq. (28). The solvability condition of Eq.
(46) is

(W HY @) + a e HOUR) = No(en I G1), (47)

where (,) stands for the L?-scalar product of two vector-
functions of &:

(f.8) = J (f'g' + fgH)d¢.

To obtain Eq. (47), we have made use of the identity

(. Hne2) =@y, Hytby), and the fact that Hyi,=0. How-
ever, since ¢, should include terms which have exponential
growth as £€— +, the validity of this identity [and hence of
Eq. (47)] may be under suspicion. To reassure that the solv-
ability condition is indeed correct, we note that the second-
order perturbation should have the form

82952(5) =—b\ifp+ 82)72 +Coyy + 8252, (48)

where C, is a constant of order &2, and the function 52 is
bounded as |& — . Note that the growing terms on the right-
hand side of Eq. (48) (the first, second, and third terms) grow

no faster than e*%¢ whereas i), decays as e~ when §&
— 4+, Therefore, when doing each of the integrals

(‘ZA/’HNJ/B), (J/&,HN%), and (lZ&,HNfl) by parts, the bound-
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ary terms vanish. Consequently, we have (lz,'v,HNqBZ)

=(¢,, Hat): QED.
Equation (47) can be simpliﬁed considerably if we use the

1dent1tles arising at the order & of equations Hl// O and

Ho, 1// 0 with H expanded as in Eq. (17) and 1,0 d, 1,// as in
Eq. (21):

H(NZ)@}# HE\}))?I +Hyx,=0

Hg\})ﬁ +Hpyy,=0
Taking the scalar product with :,ZJ'V, these become

(P HP U + (. HVX1) =0,

(4 HY'¥1) = 0. (49)
Using Egs. (26), (44), and (49), Eq. (47) simplifies to

aN* (Y Jihy) = beN (Y. Jy)) = 0. (50)
Noting that (I,Z;V,JI,ZN)Z(I/ 2)Py and evaluating the integral
(y.Jy1), Eq. (50) becomes, finally,

2

A2
?PN a+2e\pB*(1 - BY)ePp=0. (51)

Here P is the momentum of the Néel wall, Eq. (9b).
Turning to the region —xy<x <o, the eigenfunction has
the expansion

G(7) = bify = Nbifig + £2%, + O, o), (52)

where ¢, consists of a bounded part 52 and a part that grows
as 7— —%:

&2¢2(7) = Ny =~ Nay(9). (53)
The order \? of the expansion of Hg=\J¢ gives

Hp(N2G, — akihy) == N2bJ . (54)
The solvability condition is
— aN(p. Hgthy) = = N*b (. T ). (55)

where, this time,
(f.9) = f ('g" +f2g%)dn.

At first glance, the scalar product on the left-hand side
of Eq. (55) is zero as HBIZ}_:;=O- However, 1,ZN grows as
7— —0: 1,ZN~e‘B’7, while J/]’g does not decEly fast enough—in
fact, it decays at exactly the same rate: i~ 57, Therefore
(ng,HBZN) # (J,ZN,HBIZII;). [Note the difference fron} our
analysis of the neighborhood of the Néel wall where ¢, de-
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cayed faster than the exponentlally growmg terms in ¢,

would grow, and hence (zﬁN,HNqJZ) (<p2,HN1,bN) was indeed
true.] Making use of the asymptotic expression (39) and tak-
ing care of the boundary term, we get, instead:

(i) = 26pB(1 ~ B)e P, (56)

Finally, Eq. (55) becomes

A? .
—2eNpB*(1 = BY)e PPu + ?PBb =0, (57)

where Py is the momentum of the Bloch wall, Eq. (9a).

Equations (51) and (57) constitute a system of two linear
equations for two unknowns, a and b. The associated char-
acteristic equation is fourth-order in \:

APy 4epB*(1 — B*)e B8

A2
4gpB*(1 — B*)e B8

I
e

~ NPy

The equation has two zero roots corresponding to the trans-
lation symmetry of the bound state as a whole and variations
of the interwall separation; there is also a pair of real roots of
opposite sign. Using Eq. (40), these are found to be

B3B8 1
T
sin(B/2) \/_ PPy

e 2B, (58)

(Note that PN and PB are opposite in sign—see Fig. 1; hence
we have a positive quantity under the square root.) This is
the first result of our analysis. The second result is the rela-
tion between a and b, the coefficients of the leading terms in

the expansion of ¢:
| P
=+ /-2 (59)
P

N

SR

Here the plus corresponds to the positive eigenvalue and mi-
nus to the negative one. (That is, the “unstable” eigenfunc-
tion has a and b of the same sign, both positive or negative,
whereas the “stable” eigenfunction has the coefficients of
the opposite sign; see Fig. 3(a,b) below.) In what follows it
will be convenient to choose the normalization such that

a:\/P—B>O for either sign of N, while b=\-Py>0 for

A>0 and b=- —PN<0 for A<0. Thus the normalized
eigenfunctions are

@ = \/P_B(Wz’v— N +ex1) + V—PN8)71 +0(&?),

@ = \/P_B(lz;v"' |)\|lZN+ ex1) — V—PN8)71 +0(e?)
(60a)

for x<0, and

@,=\- PN(‘Zé - |7\|'ZB) +0(g%),
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&= = Py(ly+ |\ |p) + O(e?)

for x>0. Here ¢, and ¢, are the eigenfunctions associated
with the positive and negative eigenvalue, respectively.

We conclude our calculation by commenting on the case
of the complex involving a left-handed Bloch wall (o=+1)
and on the situation where the Bloch wall (right- or left-
handed) is on the left of the Néel wall (i.e., s<0). These
cases do not require a separate treatment. Indeed, let
(u(x),w(x)) be the eigenvector associated with the eigen-
value N\ (positive or negative) of the bubble Eq. (11) with
s>0 and o=-1. Changing 0 — —o changes the sign of the
off-diagonal entries of the matrix (14); hence the vector
(u(x),—w(x)) will give the eigenfunction associated with the
eigenvalue —\ for the bubble with o=1. Therefore, the “un-
stable” eigenvector for the bubble with s>0 and o=+1 is
obtained from the “stable” eigenvector of the bubble with
s>0 and o=-1, just by changing the sign of its second
component [compare Figs. 3(b) and 3(c) below]. To find the
eigenfunctions for the Bloch wall on the left of the Néel, we
note a symmetry of the bubble solution Eq. (11): ¢,(x,—s)
=i,(-x,s). According to this symmetry, changing s— —s
in Eq. (11) is equivalent to replacing x— —x and taking the
complex conjugate. Consequently, the vector (u(-x),
—w(—=x)) will serve as the eigenfunction associated with the
eigenvalue —\ for the bubble with o=-1 and s<<0. Finally,
(u(—x),w(=x)) and \ are the eigenvector and the associated
eigenvalue pertaining to the situation with o=+1, s<0.

(60b)

F. Numerical verification

The above perturbation results were verified numerically.
(We used Fourier expansions of ¢ over 120 positive and 120
negative harmonics, on the interval [-40,40].) In agreement
with our expectations, for s=% we have found four zero
eigenvalues. Two of these remain at zero as s is decreased
from infinity. The other two zero eigenvalues move to the
real axis; one becomes positive and the other negative (Fig.
2). Their magnitudes are equal. This is a general property of
linearizations of Hamiltonian systems of the form (12), with
‘H Hermitian and J as in Eq. (13); it follows from the con-
servation of symplectic areas [17]. The eigenvalues return to
zero as s — 0. These are the only eigenvalues with a nonzero
real part in the spectrum of H; hence for any finite, nonzero
s, there is exactly one unstable mode. In addition, there are
two pure imaginary eigenvalues detaching from the continu-
ous spectrum as s decreases from infinity. These do not reach
the origin; they remain on the imaginary axis and hence do
not cause instability.

The structure of the numerical eigenfunctions ¢, and @
(shown in Fig. 3) is in exact agreement with Egs. (59) and
(60). The eigenfunctions transform (under o——a,s— —s)
exactly as predicted by the perturbation theory at the end of
the preceding section.

In addition to the numerical solutions of the eigenvalue
problem (12), we performed numerical simulations of the
full time-dependent nonlinear Schrodinger equation (4).
Simulations were carried out using a split-step pseudospec-
tral method under periodic boundary conditions (see, e.g.,

PHYSICAL REVIEW E 75, 026605 (2007)

0.04r

T
)
1
1
1

0.021

-0.021

-0.041

FIG. 2. (Color online) Two discrete real eigenvalues of the ei-
genvalue problem (12). The solid lines depict eigenvalues found
numerically while the dashed line gives the perturbation approxi-
mation (58). This plot is for the case where the Bloch wall bound in
the complex is right-handed; changing the chirality of the Bloch
wall switches around the two branches, but leaves the overall shape
the same. This figure pertains to 2=0.2; for other A, the functions
A\(s) look similar.

[18]). Typically, we used an interval (-L/2,L/2) with L
=60, although for small % and large s (i.e., when the walls
bound in the bubble are far apart and decay slowly to the
background), L=120 was necessary. The time step was set at
Ar=2.5X1073. The code is stable for At<<z~'(L/N)?, so for
L=120 we were able to use N=1024 modes, while for L
=60, we were limited to N=512. The spatial resolution Ax
=2mL/N was the same in both cases. Results of numerical

4 4
(a) (b)
2 2
\ N
O \ ~ O H S
\/ 1
_o -2
-4 -4
-20 -10 0 10 20 -20 -10 0 10 20
4 4
{c) (d)
2 2
n '
0 ) 0 < 1
\ , ' \ { \
-2 -2
-4 -4
-20 -10 0 10 20 -20 -10 0 10 20

FIG. 3. The eigenfunctions of the bubble involving the right-
handed [o=-1, (a,b)] and left-handed [o=+1, (c,d)] Bloch wall.
These are obtained by numerically solving Eq. (12). The eigenfunc-
tion in (a,c) is associated with the positive and that in (b,d) with the
negative eigenvalue. In this figure, s=5 and £=0.2. The real part is
shown by the solid line, while the imaginary part is dashed.
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simulations are presented in the next two sections, concur-
rently with predictions of the asymptotic analysis.

IV. INTERPRETATION OF THE EIGENFUNCTION

The eigenfunction associated with the eigenvalue N>0
admits interpretation in terms of the motions of the constitu-
ent walls. Let, for definiteness, s >0 and o=-1, and note
that the dissociating bound state can be described by

P, 1) = gaon(D)ix + 5+ Ssp(t) —xO) + -+ (61a)
in the region x<<0, and
Yot = dp(op(1);x = 5 = Ss5(1) —x )+ (61b)

for x>0. Here 1,7/N(v ;x) and JB(v;x) are stationary solutions
of Eq. (7) with small v obtained by continuation from y/(x)

KU

and IZB(.X'), respectively, and “ -’ includes the part of the
perturbation which cannot be reduced to the translation and
velocity boost of the corresponding wall. Note that since we
have not specified this part, the parameters vy, vp, dsy, and
Ssp are not defined uniquely in Eq. (61a); to fix these param-
eters we need to restrict the “ -+ part in some way. To do
this, we note that Eq. (61a) can be represented as (x)
+ 8y(x,1), where i, (x)=(R,Z) is the stationary bubble Eq.
(11) with some s and x¥, and a small perturbation Sy(x,?)
can be written in the form

S, 1) = on(D iy + SO P+ 3nr),  (62a)
Sx,1) = vy — Ssp(t)fy + H(xt)  (62b)

in x<0 and x>0, respectively. Here
= dpnvsx+s - x(o))|u=0;

1,2,'\, = ﬂszN(O;x +5—x0);

= dypvix—s— x(o))|v=0;

Y= 00p(0:x - s = x0).

(We remind that the overdot stands for the partial derivative
with respect to v, not ¢, here.) For the given s and x(o), we
can fix vy, vg, Oy, and Jsp by requiring that the “remainder”
v(x,t) be J-orthogonal to the subspace spanned by the veloc-
ity boosts and translations:

0 . 0 .
f <;,JIZN>dX=f (v, Jdx =0, (63a)
f (5, Jihg)dx = f (B Jgydx = 0. (63b)
0 0

Here (,) denotes the scalar product in the two-dimensional
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Euclidean space: <f§> =8, +/f28,. From Eq. (63a) we have
(S Jhy)
Uy=———
(lﬂNva[IV)
and similar expressions for vg, dsy, and dsz. One more con-
sequence of the constraints Eq. (63a) is that ©(x,?) is linearly

inde;lendent from gZN and IZ;\, in the region x <0 and from LZB
and ¢, in the region x>0. [Indeed, if we assumed v=c,
+czz,7/N and substituted this in Eq. (63a), then using the fact
that ((/;](,,JIZN)=%PN¢ 0, we would immediately get ¢;=c,
_O;I]‘he perturbation Eq. (62a) can be expanded over solu-
tions of the equation (12):

Sih= M, NG, + Me™NG,
+ Nty + Nodyihy + QW0 g + Qiont g0

+ f Q(l)(k)eiwt(%(l)dk

+ f QD (k)e' pPdk. (64)

In Eq. (64), ¢, and ¢, are the eigenfunctions associated with
discrete real elgenvalues N\ and —A\, respectively, where we
set A>0; 1//b and 4, (/f,, are the two zero modes while ¢(+) and
) are eigenfunctions associated with pure imaginary dis-
crete eigenvalues +iw,. Finally, (ﬁ(l) and ¢(2) are solutions of

the continuous spectrum, H(ﬁ(l 2)—1 Jd)kl 2), with w —-(k2
+4)(K*+B?), and w(k)>0 for k>0 and w(k) <0 for k<0.
As t grows, the expansion (64) tends to M,eN¢,, where
¢,(x) is given by Eq. (60a). This should be identified with
the large-¢ behav1or of Eq. (62a). Using linear 1ndependence

of vectors WN, 1//N, v in x<0 and vectors 1//B, 1,03, vin x>0,

we get

PBe)\t,

UN(t) — = )\Mu
vp(t) = = XM, = Pye™; (65)
(sSN(t) d Mu PBe)\t,

Ssp(t) — — M\ = Pye (66)

as r— o, Equations (65) and (66) are consistent in the sense
that the velocity of the wall determined from the deformation
of its shape coincides with the velocity defined by the posi-
tion of its center:

d d
onlt) = = = Bs(). - vplt) — - Bsy(0).
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t
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FIG. 4. The development of the instability of the bubble Eq. (11). Shown are the curves of constant real part. The wide and narrow trails
pertain to the Bloch and Néel walls, respectively. Panels (a) and (b) correspond to bound states involving right-handed Bloch walls (o=
—1), with s=5 and s=-5, respectively. The evolution of the bubbles with the left-handed Bloch walls (o= +1) is depicted in panels (c) and
(d), also with s=5 and s=-5, respectively. No perturbations were added to the stationary initial condition (11) “by hand;” the initial
(uncontrollable) disturbance was merely due to the discretization of the equation. The collision of two walls in (a) produces a breather. This
breather moves so quickly that the contour plot seems to indicate the presence of two separate breathers whereas there is in fact only one.
This effect is due to a sparse time-sampling of the profile which we had to resort to for better visualization. The image in (a) has been
generated by saving a profile once only every 200 time units. In these plots, #=0.1.

Note that the derivative PN is greater, in absolute value,

than Py (see Fig. 1). Consequently, Eq. (65) implies that the
Bloch wall arising from the dissociation of the bubble, al-
ways moves faster than the emerging Néel wall: |vg| > [vyl.
The same Eq. (65) implies that the corresponding velocities
and accelerations of the Bloch and Néel walls will be colin-
ear. Consequently, the walls emerging from the decay of the
bubble with s>0 and o=-1 will be moving in the same
direction. (The direction will of course be determined by the
initial perturbation.) This conclusion is in agreement with
direct numerical simulations of Eq. (4). [See Fig. 4(a).]

It follows then from Eq. (65) that if M, >0, the two walls
will be moving to the left, with the Bloch wall catching up
with the Néel wall. This was indeed seen in simulations [Fig.
4(a)]. (In our numerical simulations, the choice M, >0 was
accidental; the initial perturbation of the bubble was entirely
due to the discretization errors and hence beyond our con-
trol.) On the contrary, if M, <0, the walls will be moving to
the right, with the Néel wall lagging behind.

Changing o— —o swaps around the top components of
the eigenfunction ¢, associated with A >0 and eigenfunction
@, pertaining to the negative eigenvalue —\. Therefore the
“unstable” eigenfunction of the bubble with o=+1 involves

coefficients a and b of the opposite signs. As a result, the
fragments of its decay—the Néel and left-handed Bloch
wall—will be moving in opposite directions. The simulations
confirm this [Fig. 4(c)].

As we have already mentioned, the choice of the coeffi-
cient M, was beyond our control in the simulations. For s
=5 and o=+1, our discretization induced M ,>0. However,
for a slightly different value of s, viz. s=4.9, the “unstable”
eigenfunction ¢, was seen to be excited with the coefficient
M, <0 (Fig. 5).

The effect of the change s— —s amounts to changing o
——0 and x— —x; therefore the dissociating bound state of
the right-handed Bloch wall on the left of the Néel wall will
produce walls moving in opposite directions. [Simulation
shown in Fig. 4(b).] Finally, a left-handed Bloch wall (o
=+1) and a Néel wall placed on its right (i.e., s<0) will
move in the same direction. If (as it happened in our simu-
lations) M, is >0, the Bloch will be leaving the Néel wall
behind [Fig. 4(d)].

In the case of converging walls, the result of the collision
in all cases is the formation of a spatially localized, tempo-
rally oscillating object (which we refer to as a breather),
propagating over the constant background =1. An
asymptotic expression for the breather was derived in Ref.
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8$x10°
> < t
- 44x10°
s=49
o=1
-30 30

FIG. 5. Evolution of the bound state involving a left-handed
Bloch wall (o=+1), with s=4.9. This initial condition is almost
identical to the initial condition that led to Fig. 4(c); however, the
direction of motion of the walls is now exactly opposite. The rea-
son, of course, is that M, was positive in the perturbation of Fig.
4(c), whereas here, the “unstable” eigenfunction ¢, is excited with
a negative coefficient. As in Fig. 4, in this plot #=0.1.

[1]; here, we simply note that it persisted indefinitely after it
was formed in our simulations.

V. THE BLOCH-NEEL INTERACTION
A. The method

Our knowledge of the phase space in the vicinity of the
unstable bound state of the Bloch and Néel walls can be used
to make conclusions on the evolution of particular initial
configurations of the two walls. Any initial condition com-
prising well-separated Bloch and Néel walls can be repre-
sented as

(x,0) = P, (x) + OY(x,0),

where ,(x) is the bubble Eq. (11) with some suitably chosen
separation s, centered at some point x9 and Oi(x,0) is a
small perturbation. This initial perturbation can be expanded
as in Eq. (64) where we just need to set t=0. In order to find
the coefficient M, with which the unstable eigenvector ¢,
enters the perturbation, we note that the J-product of the
vector ¢, with any solution of Eq. (12) except ¢, is zero:

(Q_D)s“]()zs) = (()st*]lpb,) = (()BA’Jalpb)
= (¢J ) = (6 ) = (6, $7) = 0.
[This is a simple consequence of the Hermiticity of the op-

erator H in Eq (12): if HQ I J§1 and H{z— 2J§2, then

()\1"')\2)({1,](2) 0. Hence (§1,J§2) 0 unless Aj=—\,.]
Therefore

M, = M. (67)

(@:7¢.)
The sign of M, determines the direction of colinear motion
of the two walls. In fact, the denominator in Eq. (67) is
positive and the sign of M, is determined just by the sign of

PHYSICAL REVIEW E 75, 026605 (2007)

(qu,J&Z). Indeed, using the representation (60a) for @,(x),
¢,(x) and invoking the identity (50), one can check that the
integral over the negative semiaxis is zero to the leading
order in &:

0
f (GodG)dx= 0.

We remind that (,) is the scalar product in the two-
dimensional Euclidean space: {f,g)=f,g,+f>g, whereas (,)

stands for the L?-scalar product: (]?(x) 80N =J fx(f ,&)dx. On
the other hand, using the expansion (60b) for 0 <x<<co, we
obtain

f <()-D)s’J()Bu>dx=_)\PNPB’
0

which is positive for A>0 (see Fig. 1). Thus (¢,,J¢,)
=—\PyPp+0(¢?)>0. QE.D.

B. Example

As a characteristic example, we consider the initial con-
dition of the form

#(x,0) = — thy(x +x) Pp(x — xy) (68)

with some x;>0. In applications, this product function is
often used as an approximation for two well-separated dark
solitons, in the same way as two weakly overlapping bright
solitons are usually approximated by their sum. (See e.g.,
Ref. [1] where this type of ansatz was employed for the
variational analysis of the Néel-Néel and Bloch-Bloch inter-
actions.) Assuming that the Bloch wall is right-handed and
that x; is large, we have

Re #(x,0) = — tanh &+ 2?52 tanh £+ -,

Im ¢(x,0) =2 sechB P2V tanh £+ -+ (69a)

in the region x <0, and
Re (x,0) = tanh(By — B) — 2¢~27217FB) tanh(B 5 — B)

FEEE s

Im ¢(x,0) = sechB sech(Bn— B)
-2 sechB ¢ 2r21=F/B) sech(By— B) + -+ -
(69b)

in the region x>0. Here we have defined £ and 7 according
to

E=x+x,, n:x—x1+§. (70)

Note that the leading, O(&"), terms in Eq. (69a) coincide,
formally, with the leading terms in the asymptotic expan-
sions of the bubble, Egs. (15) and (29). However, the defini-
tions of ¢ and 7 in Eq. (70) will not, in general, be consistent
with the definitions of £ and # for the bubble, i.e., Egs. (16)

026605-11



I. V. BARASHENKOV AND S. R. WOODFORD
2x 10"
(a) *
t
L 1x 10"
20
8x 10°
(b)
t
L 4x10
20

PHYSICAL REVIEW E 75, 026605 (2007)

8x10°
(c) *
t
- 4x10°
20
2x 10*
(d)
t
- 1x 10"
20

FIG. 6. Typical results of the evolution of an initial condition of the form (68). Panels (a) and (b) correspond to the right-handed Bloch
wall, to the right (x; >0) and the left (x; <0) of the Néel wall, respectively. Panels (c) and (d) correspond to the left-handed Bloch wall, to
the right and the left of the Néel wall, respectively. The Bloch wall moves towards the Néel wall in all cases. The Néel wall moves towards
or away from the Bloch wall depending on whether it is on the left or right of the Bloch wall, and on the Bloch wall’s chirality. After the
collisions in (b) and (c), a fast-moving breather is formed; however, for visual clarity, this solution is not shown. Here, h=0.1.

and (30). To achieve the consistency, we introduce an addi-
tional translation parameter 19 in the definitions (16) and
(30):

E=x—-xO4s5+8, p=x-x0-s. (71)

Thus we allow for translations of the bubble to ensure the
coincidence of the leading terms in Egs. (69) with those in
Egs. (15) and (29). Equating Eq. (70) with (71) we obtain
parameters of such a reference bubble:
(-3
1-—=.
B

1
s:xl—é<1+—), x(o):é
2 B

2
Subtracting the bubble solution with parameters (72) from
the initial condition (68), we obtain the following expres-
sions for Re Siy=Re (x,0)—R(x) and Im Sp=1Im ¢(x,0)
-Z(x):

(72)

Q2(B-D¢
Re i(x) = e%e 8P sinh(2 ) 3 e,
cosh” &
o B-DE
Im Sy(x) = 2eBe 5P 4 (73a)
cosh &
in the region x <0, and
2B-D7

Re 8i(x) = we~># sinh(28)

b}

cosh’(By— B) o

277cosh(B 7) — e *P sech B cosh(Bn— B)
cosh’(Bn— B)

Im S(x) =2ue”

. (73b)

for x>0. Here e=¢ 2 and uw=¢"*; R and T are the real and

imaginary parts of the solution Eq. (11): ¢,=R+iZ.

In order to evaluate the integral (¢,,J8y) in Eq. (67), we
note that the positive semiaxis of x gives a contribution of
the order e~?*5), This is exponentially smaller than the con-
tribution of the negative semiaxis (which is of the order
¢72B%) and hence can be neglected. Using Eqgs. (60a) and
(73a) we then get

©

(¢,,J8) = 2e\— Py Be BP f eBVegech e de+ -+

—o0

which is positive. Hence M >0, and, according to Egs. (65)
and (66), both walls will be moving to the left.

The direct numerical simulations of Eq. (4) verify these
conclusions. Figure 6 presents simulations of the initial con-
dition (68) with x;=+6 and h=0.1, for both chiralities of the
Bloch wall. (These results are representative of all & pro-
vided |x,| is sufficiently large.) When the Bloch wall is right-
handed and x, is positive, i.e., when the Bloch wall is on the
right of the Néel, both walls move to the left [Fig. 6(a)],
precisely as our analysis predicted. Using symmetries of the
initial condition (68) and the partial differential equation (4),
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one can readily check that the evolutions shown in Figs.
6(b)-6(d) are in agreement with the asymptotic analysis as
well.

VI. CONCLUDING REMARKS
A. Energy considerations

Equation (4) is conservative, with the energy integral
given by

1 o) h )
:Ef{|l/ix|2+|¢|4_lp|l/il2_;[¢z+(dl )2]+1}dx.
(74)

The bubbles, being time-independent solutions of Eq. (4),
must render the functional (74) stationary: SE=0. Since they
depend on s smoothly, it follows that dE/ds=0: the energy
of the bound state is independent of the distance between its
constituents. This seems to suggest that the binding energy of
the Bloch and Néel walls is zero, implying the noninteraction
of the walls.

However, our analysis has revealed that the walls do, in
fact, interact. We have shown that all bound states with the
parameter s # 0 are exponentially unstable against the decay
into constituent walls. Exponential growth of the intersoliton
separation [see Eq. (66)] is a clear manifestation of a nonva-
nishing interaction between the walls—for noninteracting
walls, the separation would only grow linearly. As for the
zero binding energy, it can be reconciled with the nonvanish-
ing interaction by noticing that the bound Néel wall acquires
a small static imaginary part [see Eq. (15)]. (The bound
Bloch wall also acquires a stationary perturbation, but it is
exponentially smaller than the perturbation of the Néel wall.)
To leading order, the force between two walls is made up of
the force between their real parts and the force between their
imaginary parts while the force between the real part of one
wall and the imaginary part of the other one is of the second
order of smallness [19]. The imaginary part of any nontrivial
stationary solution decays as O(e~?¥), while the real part de-
cays as O(e>B%) or O(e7**). Consequently, the force caused
by the overlap of the imaginary parts of the soliton tails has
a longer range than the force caused by overlapping real
parts. Thus although the amplitude of the imaginary excita-
tion of the Néel wall is exponentially small for large s, the
interaction of this excitation with (the imaginary part of) the
Bloch wall is enough to balance the force between the Bloch
wall and the “naked” Néel wall. If we decrease s, and the
two walls in the complex are pulled closer, the increase of
(the absolute value of) the binding energy of their real parts
is offset by storing more energy of the opposite sign in the
imaginary excitations; the total energy remains invariant. A
similar mechanism was described by Ostrovskaya et al. in
the context of the dark-bright solitons of the undriven vector
nonlinear Schrodinger equation [20]; there the imaginary ex-
citations were referred to as “solitonic gluons.”

B. Walls as particles

Next, we need to explain, qualitatively, the anomalous
behavior apparent in Figs. 4(a), 4(d), 6(a), and 6(d), where
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the velocities and accelerations of the two interacting walls
are seen to have the same (rather than the opposite) direc-
tions. The key observation here is that the Bloch and Néel
walls, considered as pointlike particles, have masses of op-
posite signs (see Fig. 1). One can easily conceive a simple
model system of positive- and negative-mass particles,
which exhibits the observed phenomenology. Let x; and x,
be the coordinates of the two particles, with z=x,—x,, and
let m; >0 and m, <0 be their masses. Consider the Hamil-
tonian

1y,

m, )2 (75)

-f1)*+ _(Pz
where p;,p, are the momenta of the particles, and the func-
tions f;=f,(z) and f,=f,(z) decay, exponentially, as |z|— .
The equations of motion are

. oH , 1 ,
P1=—a___(P1 ffi+—(p2-f2)f5, (76a)
X1 my
. oH .
Dr=—T"==D1, (76b)
(9)62
oH
x1=___(P1 f1), (76¢)
dp; my
oH
X2=___(P2 f2), (76d)
dpy  my

where the overdot indicates differentiation with respect to
time, ¢ (and not v as earlier in the text). The prime stands for
the derivative with respect to z.

For any z=z,, Egs. (76) have a fixed point, describing an
unstable bound state of two particles:

=f1(z0)s  P2=/f2(z0)- (77)

This fixed point is an analog of the bound state of two walls,
Eq. (11). Linearizing Egs. (76) about the equilibrium point
(77), and letting 8p; (1), Ox; 5(1) €M, we get a pair of non-
zero real eigenvalues

1
N = £ ———f](z0) + f3(z0)]. (78)
N—mny

(There is also a pair of zero eigenvalues resulting from the
overall translations x, —>x1,2—x(0) and the freedom in
choosing z,.) Working out the associated eigenvectors and
substituting them into the linearized equations (76¢) and
(76d), we find

K®
mlﬁxl = * /—52, (793)
V|m,|
K®
|m2| 5)C2 = ’,'_—52, (79b)
Vmy

where K@ are coefficients dependent on m; , and f] ,(z).
If f](z0)+f3(z9) >0, the unstable eigenvalue is A, and
we keep the top sign in Eq. (79a). This is the case of anoma-
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lous behavior: the velocities dx; and dx, as well as accelera-
tions 8%; and &%, have the same sign and so the particles
move in the same direction, like the walls in Figs. 4(a), 4(d),
6(a), and 6(d). If f(zo) +f3(z0) <O, the positive eigenvalue is
A and the “unstable” eigenvector is given by Eq. (79a)
with the bottom sign. In this case the two particles have
opposite velocities and opposite accelerations; this corre-
sponds to the “normal” interaction of the Bloch and Néel
wall seen in panels (b) and (c) of Figs. 4 and 6. (It is fitting
to note here that the anomalous behavior does not mean that
the two particles violate the third Newton’s law. The force
exerted by the particle 2 on particle 1, —9dH/dx,, is exactly
opposite to the back reaction force, —dH/ dx,.)

C. Conclusions

Finally, we summarize the results of this investigation.
The essence of our approach is to consider the interacting
Bloch and Néel walls as a perturbation of their unstable sta-
tionary complex. The interaction between the two walls is
characterized by the eigenfunction associated with the posi-
tive eigenvalue in the spectrum of the linearized operator
(evaluated at this stationary solution).

Using matched asymptotic expansions, we have evaluated
the real eigenvalues for the Bloch-Néel complex and con-
structed the associated eigenfunctions. The structure of the
“unstable” eigenfunction for the complex consisting of a
right-handed Bloch wall on the right, and a Néel wall on the
left, indicates that the walls emerging from the decay of this
“bubble,” will be moving colinearly, i.e., in the same direc-
tion. This rule determines the evolution of a general configu-
ration of a right-handed Bloch wall on the right and a Néel
wall on the left—as long as the walls are sufficiently far
away from each other. Using symmetry properties of the
Bloch-Néel complex, we can also predict the type of motion
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(colinear or antilinear) for other chiralities and mutual ar-
rangements of the walls. The asymptotic analysis is in agree-
ment with direct numerical simulations of the interacting
Bloch and Néel walls.

Although the unstable eigenfunction determines the type
of motion of two interacting walls, knowing the structure of
this eigenfunction is insufficient to know which direction this
motion will take. (Depending on whether the unstable eigen-
function is excited with a positive or negative coefficient, the
colinearly moving walls may travel to the left or to the right.
Similarly, in those cases where the unstable eigenfunction
sets the opposite direction of motion for the walls, they may
travel either towards or away from each other.) The actual
direction of the colinear or antilinear motion depends on the
particular initial condition and can be determined by the pro-
jection of the corresponding perturbation of the stationary
complex on its unstable eigendirection. We have evaluated
this projection for an initial condition in the form of a prod-
uct of the Bloch- and Néel-wall solutions, and verified the
conclusions of the asymptotic analysis numerically. Finally,
we have interpreted the anomalous interaction of the Bloch
and Néel walls as a dynamics of two interacting particles,
one with positive and the other with negative mass.
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